Skip to main content

Use of Multiobjective Optimization Concepts to Handle Constraints in Single-Objective Optimization

  • Conference paper
  • First Online:
Genetic and Evolutionary Computation — GECCO 2003 (GECCO 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2723))

Included in the following conference series:

Abstract

In this paper, we propose a new constraint-handling technique for evolutionary algorithms which is based on multiobjective optimization concepts. The approach uses Pareto dominance as its selection criterion, and it incorporates a secondary population. The new technique is compared with respect to an approach representative of the state-of-the-art in the area using a well-known benchmark for evolutionary constrained optimization. Results indicate that the proposed approach is able to match and even outperform the technique with respect to which it was compared at a lower computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomas Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press, NewYork, 1996.

    MATH  Google Scholar 

  2. Eduardo Camponogara and Sarosh N. Talukdar. A Genetic Algorithm for Constrained and Multiobjective Optimization. In Jarmo T. Alander, editor, 3rd Nordic Workshop on Genetic Algorithms and Their Applications (3NWGA), pages 49–62, Vaasa, Finland, August 1997. University of Vaasa.

    Google Scholar 

  3. Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont. Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, NewYork, May 2002. ISBN 0-3064-6762-3.

    MATH  Google Scholar 

  4. David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading, Massachusetts, 1989.

    MATH  Google Scholar 

  5. Joshua D. Knowles and David W. Corne. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation, 8(2):149–172, 2000.

    Article  Google Scholar 

  6. Slawomir Koziel and Zbigniew Michalewicz. Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization. Evolutionary Computation, 7(1):19–44, 1999.

    Article  Google Scholar 

  7. Zbigniew Michalewicz and Marc Schoenauer. Evolutionary Algorithms for Constrained Parameter Optimization Problems. Evolutionary Computation, 4(1):1–32, 1996.

    Article  Google Scholar 

  8. I. C. Parmee and G. Purchase. The development of a directed genetic search technique for heavily constrained design spaces. In I. C. Parmee, editor, Adaptive Computing in Engineering Design and Control-’94, pages 97–102, Plymouth, UK, 1994. University of Plymouth, University of Plymouth.

    Google Scholar 

  9. Tapabrata Ray, Tai Kang, and Seow Kian Chye. An Evolutionary Algorithm for Constrained Optimization. In Darrell Whitley et al., editor, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2000), pages 771–777, San Francisco, California, 2000. Morgan Kaufmann.

    Google Scholar 

  10. Jon T. Richardson, Mark R. Palmer, Gunar Liepins, and Mike Hilliard. Some Guidelines for Genetic Algorithms with Penalty Functions. In J. David Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms (ICGA-89), pages 191–197, San Mateo, California, June 1989. George Mason University, Morgan Kaufmann Publishers.

    Google Scholar 

  11. T.P. Runarsson and X. Yao. Stochastic Ranking for Constrained Evolutionary Optimization. IEEE Transactions on Evolutionary Computation, 4(3):284–294, September 2000.

    Article  Google Scholar 

  12. Alice E. Smith and David W. Coit. Constraint Handling Techniques—Penalty Functions. In Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors, Handbook of Evolutionary Computation, chapter C 5.2. Oxford University Press and Institute of Physics Publishing, 1997.

    Google Scholar 

  13. Patrick D. Surry and Nicholas J. Radcliffe. The COMOGA Method: Constrained Optimisation by Multiobjective Genetic Algorithms. Control and Cybernetics, 26(3):391–412, 1997.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aguirre, A.H., Rionda, S.B., Coello Coello, C.A., Lizárraga, G.L. (2003). Use of Multiobjective Optimization Concepts to Handle Constraints in Single-Objective Optimization. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45105-6_69

Download citation

  • DOI: https://doi.org/10.1007/3-540-45105-6_69

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40602-0

  • Online ISBN: 978-3-540-45105-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics