Skip to main content

Non-universal Suffrage Selection Operators Favor Population Diversity in Genetic Algorithms

  • Conference paper
  • First Online:
Genetic and Evolutionary Computation — GECCO 2003 (GECCO 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2724))

Included in the following conference series:

Abstract

State-of-the-art concept learning systems based on genetic algorithms evolve a redundant population of individuals, where an individual is a partial solution that covers some instances of the learning set. In this context, it is fundamental that the population be diverse and that as many instances as possible be covered. The universal suffrage selection (US) operator is a powerful selection mechanism that addresses these two requirements. In this paper we compare experimentally the US operator with two variants, called Weighted US (WUS) and Exponentially Weighted US (EWUS), of this operator in the system ECL [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Divina and E. Marchiori, Evolutionary concept learning, in GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, 9–13 July 2002, Morgan Kaufmann Publishers, pp. 343–350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Divina, F., Keijzer, M., Marchiori, E. (2003). Non-universal Suffrage Selection Operators Favor Population Diversity in Genetic Algorithms. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45110-2_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-45110-2_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40603-7

  • Online ISBN: 978-3-540-45110-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics