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Abstract. The accuracy-based classifier system XCS is currently the
most successful learning classifier system. Several recent studies showed
that XCS can produce machine-learning competitive results. Nonethe-
less, until now the evolutionary mechanisms in XCS remained somewhat
ill-understood. This study investigates the selectorecombinative capabil-
ities of the current XCS system. We reveal the accuracy dependence of
XCS’s evolutionary algorithm and identify a fundamental limitation of
the accuracy-based fitness approach in certain problems. Implications
and future research directions conclude the paper.

1 Introduction

After Holland’s introduction of learning classifier systems (LCSs), originally
referring to a cognitive system [7], one of the most important steps in LCS
research was the development of the accuracy-based classifier system XCS by
Wilson [12]. Most of the recent work on LCSs focuses on XCS. Among the many
changes from the original LCS, the accuracy-based fitness in XCS is considered
as the distinctive feature and the most important reason for success.

Although crossover has always been applied in XCS, our experimental in-
vestigations showed that in most investigated classification problems to date
mutation alone seems to be sufficient to evolve an appropriate solution. How-
ever, the larger a problem the more difficult it becomes to generate an accurate
solution by mutation. This is the case since mutation in general results in a
diversification pressure and in LCSs effectively in a specialization pressure since
classifiers usually specify only a small fraction of the available features [2]. The
larger the problem, however, the more general classifiers need to be to undergo
sufficient evaluations and reproductive events. Thus, the larger a problem the
smaller mutation needs to be. Consequently, only successful recombinations of
accurate sub-structures, or building blocks [6], can do the trick. Additionally, as
argued in [5], suitable search and ultimately innovative events are determined
by effective recombination of appropriate sub-parts. As this insight led to the
development of competent GAs—GAs that solve boundedly difficult problems
quickly, accurately, and reliably—the same approach seems necessary in learn-
ing classifier system research to develop competent LCSs, that is, LCSs that
solve typical (decomposable) machine learning problems efficiently.
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Recently, several studies addressed how XCS works. Many of these try to
explain the XCS mechanisms and help choosing appropriate parameter settings.
An important aspect missing so far is an explanation for the apparent non-
performance of XCS in some problems. This paper investigates a set of such
hard problems. By doing that, we reveal an important interaction between the
accuracy based fitness and the selectorecombinative GA [6,4] in XCS that pre-
vents learning. Previous early hints on this interaction can be found in [1].

The role of the GA in XCS is to evolve accurate classifiers as well as to
search for optimal generalizations within classification niches. The basic working
of GA dictates that selection, recombination, and mutation progressively results
in the discovery of better individuals. We show that the GA in XCS may not
be able to achieve this in particular problems due to a lack of suitable accuracy
guidance from the over-general side. We use concatenated multiplexer problems
(multiplexer problems formed by concatenating the condition and action parts of
more than one single multiplexer problem) to illustrate how XCS performance is
affected by the combination of accuracy based fitness and selectorecombinative
GAs.

After a brief review on previous analyses of XCS mechanisms, we formal-
ize the derivation of the estimated prediction error in XCS. Since the accuracy
is derived from the prediction error estimate, this estimate is crucial for XCS
success. In Sect. 4 we identify a fundamental weakness in XCS’s accuracy ap-
proach, illustrating successful and unsuccessful selectorecombinative events in
XCS. Concluding remarks complete the paper.

2 XCS Performance

Along with the introduction of XCS, Wilson [12] illustrated the success of XCS
both in single-step problems and multi-step problems with results from ex-
periments on Multiplexer and Woods2 environments respectively. Later Wil-
son showed the successful performance of XCS in a standard data mining task
[13]. However, the results obtained in several other test environments were not
very encouraging. An interesting comparison of the performance of XCS with
other LCS models in various Maze environments can be found on the web page:
http://www.ai.tsi.lv/ga/lcs performance.html

Although considerably more tractable than Holland’s original LCS model,
XCS is still a complex system. There have been several attempts recently to
understand XCS mechanisms and their interactions. The studies by Kovacs [8]
established that XCS would be able to accurately build an optimal representation
of the payoff function of a problem. Kovacs also illustrated how XCS overcomes
the problem of strong over-generals encountered in strength based LCSs without
fitness sharing [9]. A fundamental problem difficulty dimension was characterized
by Kovacs’ optimal rule set size measure [O] [10]. Recently, Butz et al. [1,2]
have given a more analytical treatment of XCS mechanisms, in which further
dimensions of problem complexity were identified.
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3 Accuracy Revisited

The most important and distinctive feature of XCS is its fitness definition. In the
traditional LCS approach payoff prediction of the classifier, sometimes combined
with condition specificity, is directly used as the fitness measure. In XCS, the
accuracy with which a classifier predicts payoff is used as a measure of its fitness.

The actual procedure of fitness calculation involves several steps [3]. Ev-
ery time a classifier takes part in an action set, first its prediction parame-
ter is estimated using the immediate payoff received according to the standard
Widrow-Hoff delta rule. Next, an estimate of the absolute error in estimate of
the prediction is done using the current error (absolute difference between the
immediate payoff and the current estimate of prediction). This is again done by
the Widrow-Hoff delta rule. This error estimate is then used to calculate the
accuracy of a classifier by using a power function on error. This ensures that
classifiers with error less than a threshold value will have accuracy one and the
accuracy falls steep with increase in error. Next, the accuracy values (all between
zero and one) of all the classifiers in the action set are used to calculate a rela-
tive accuracy value for each classifier in the action set. These relative accuracy
values are then used to update the fitness of classifiers using the Widrow-Hoff
delta rule once again.

The procedure described above shows that the estimated absolute error plays
a crucial role in the determination of accuracy of a classifier. To understand the
full significance of this we should know what the estimates of prediction and
prediction error mean to a classifier. A classifier represents a set of environmen-
tal states along with a possible action. Thus, a classifier in fact represents a
set of state-action pairs for the given problem. Each state-action pair results
in a particular reward (state-action value). Hence, as a classifier takes part in
many action sets and with the update procedure described above, the prediction
parameter of the classifier is estimated towards the average of the state-action
values of the state-action pairs covered by the classifier. Similarly, the update
procedure on prediction error results in an estimate of the mean absolute de-
viation (MAD) in the covered state-action pairs. Thus, the error estimate of a
classifier in XCS is in fact an estimate of MAD of state-action values associated
with that classifier. We call this value simply the MAD of the classifier.

The above definition of error can be used to calculate directly the error of
a classifier and hence determine its accuracy. For example, let ps denote the
probability of correct classification with a uniform reward of r and zero reward
otherwise. Then the prediction P of a classifier may be written as

P = rps + 0 ∗ (1 − ps) = rps (1)

Similarly, the error ε which is the MAD of the classifier may be written as

ε = |r − P |ps + |0 − P |(1 − ps) = 2r(ps − p2s) (2)

(see also [1]). We use these expressions to determine reward prediction and re-
ward prediction error of classifiers in the following sections. Figure 1 illustrates
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Fig. 1. Prediction-error dependence on correctness of classifier in a 1000/0 reward
scheme

Equation 2. It can be seen that the more consistently a classifier classifies cor-
rectly (or incorrectly), the smaller its prediction error and thus the larger its
accuracy will be.

4 Accuracy Guidance for Successful Recombination

Two fundamental processes are associated with the working of every LCS - rule
discovery and rule evaluation which are executed by the GA and the credit
allocation components, respectively. In XCS, these two processes work towards
the objective of building a complete, accurate, and maximally general payoff
map. That is, a problem representation is formed that is able to predict the
resulting payoff of an action, or classification, for any possible problem instance.
Important changes in XCS are the accuracy-based fitness approach and GA
selection which is applied in action set niches rather than panmictically in the
whole population as in traditional LCSs. Deletion, however, is done panmictically
in the whole population. This results in an inherent generalization pressure as
hypothesized in [12] and formulated in [2].

The question is now how the GA evolves accurate classifiers in XCS. The
GA used in XCS is basically selectorecombinative. This means that the driv-
ing force of evolution towards better individuals is the dual process of selection
and recombination with a continuous influence of mutation. With this point of
view, accurate classifiers are evolved from selection, mutation, and recombina-
tion of good partially accurate solutions. Especially successful recombinations of
different partially accurate sub-parts, or building blocks, should lead to higher
accuracy.

4.1 Accuracy Guidance Required

Let’s define an accurate, maximally general classifier as a completely successful
classifier and the corresponding generalization a completely successful general-
ization. A perfect classifier has maximum accuracy so that any further generaliza-
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tion of the classifier condition will result in a reduction in accuracy. Such a clas-
sifier can be characterized by the specified positions in the condition part since
all other positions are filled with don’t care symbols. Let us say this classifier
condition consists of three specified positions a, b and c. Based on the discussion
above, this classifier can be generated through GA recombination or mutation.
Hence we can reasonably assume that the specific pattern of abc can result only
from recombinations or mutations of classifiers with the partial patterns a, b
and c in them (since a direct generation of abc by mutation is highly unlikely).
We term the classifiers that specify a subset of positions abc partially successful
classifiers and the corresponding generalizations partially successful generaliza-
tions. Note that there might be more than one possible completely successful
generalization and different completely successful classifiers might overlap. This
issue, however, needs to be addressed separately from the concern in this paper.

The above argument leads to the hypothesis that successful generalization
can be possible only if the following two conditions are satisfied. (1) Sustenance of
partially successful classifiers in the population; (2) Partially successful classifiers
whose conditions are more similar to completely successful classifiers have higher
accuracy. The first condition says that the partially successful classifier should
have some minimum accuracy (fitness) so that it will not get deleted from the
population. To a great extent this is dependent on the parameter setting of XCS
as well as on the problem properties. The second condition says that classifiers
with conditions closer to a completely successful classifier should have higher
fitness so that a proper recombination/mutation can lead to the generation of
completely successful classifiers. As we investigate in the rest of this paper, this
accuracy guidance is essential for successful evolutionary learning in XCS.

Note that we focus on when a successful recombination, i.e. a recombination
that generates offspring that is more similar to a perfect classifier in its condition
part than its parents, actually also results in higher accuracy. In this paper,
we are not interested in the matter of a good crossover operator or even in
the creation of a competent crossover operator (such as the probabilistic model
building GAs field (PMBGAs) [11]), but in the satisfaction of the preconditions
for such successful recombination.

4.2 Accuracy Guidance in the Six Multiplexer

To illustrate accuracy guidance further we take the Boolean multiplexer problem
as an example.

Multiplexer problems are widely used test problems in LCS research. In a
multiplexer problem, the agent tries to predict the output of a multiplexer func-
tion. A multiplexer function is a function defined on binary strings of length
k + 2k. The first k bits reference the output bit in the 2k remaining bits. In a
3 multiplexer problem, for example, a zero in the first bit would determine the
output being the second bit while a one would reference the third bit.

In the 6 multiplexer problem the input strings are of length six and the first
two bits determine the output bit position. According to our definition of a com-
pletely successful classifier, it can easily be observed that one of the completely
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Fig. 2. Progress of successful generalization in 6 multiplexer problem

successful classifier in a 6 multiplexer problem is 01#1## → 1. Now consider
that the condition part of this classifier consists of three consecutive patterns a,
b and c involving the three specified bits respectively. Then a partially successful
classifier with pattern a is 0##### → 1. Similarly partially successful classi-
fiers with patterns b and c are #1#### → 1 and ###1## → 1 respectively.
Here we have considered the most general version of partially successful clas-
sifiers though we can consider partially successful classifiers with more specific
bits with the same effect. Now let us look at what happens to the accuracy when
the partially successful classifiers combine.

Figure 2 illustrates the progressive recombination of partially successful clas-
sifiers A, B and C resulting in the completely successful classifier ABC. A 1000/0
payoff scheme is used in this example and the accuracy of classifiers is measured
as MAD. It can be seen that the MAD diminishes when partially successful clas-
sifiers recombine. Eventually, the completely successful classifier with MAD 0
will be generated. Here the condition (2) of our hypothesis holds in that a suc-
cessful recombination of partially successful classifiers also results in a decrease
in MAD and thus in an increase in accuracy. This explains how XCS with the
accuracy based fitness is able to successfully solve the 6 multiplexer problem.
What happens when condition (2) is not satisfied? This is illustrated in the next
section using what we call a concatenated multiplexer problem.

4.3 Concatenated Multiplexer Problems

We construct concatenated multiplexer problems by combining more than one
multiplexer problem. In a concatenated multiplexer problem, the agent tries
to predict the output of a concatenated multiplexer function. A concatenated
multiplexer function is the function obtained by concatenating the input part
and the output part of more than one individual multiplexer functions of the
same type. The output will be the combination of outputs determined by the
individual multiplexer functions. For example, Table 1 shows a sample of inputs
and outputs of a concatenated multiplexer function made of three 3-multiplexer
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Table 1. A sample input/output mapping of 3X3 multiplexer problem

Input Output

000 000 000 000
010 100 111 101
110 101 001 010
111 110 001 100
111 111 111 111

Table 2. In the 3X3 multiplexer problem the necessary classifiers for an accurate and
correct classification need to be much more specific than those for an accurate but
wrong classification (classifiers that always suggest a wrong classification)

Correct Classifiers Wrong Classifiers
Condition Action Condition Action

00# 00# 00# 000 ### ### 01# 000
00# 00# 1#0 000 ### ### 1#1 000
00# 1#0 00# 000 ### 01# ### 000
00# 1#0 1#0 000 ### 1#1 ### 000
1#0 00# 00# 000 01# ### ### 000
1#0 00# 1#0 000 1#1 ### ### 000
1#0 1#0 00# 000 ### ### 00# 001
1#0 1#0 1#0 000 ... ...
00# 00# 01# 001 ... ...
... ... ... ...

functions. We call this concatenated problem a 3X3 multiplexer problem. In
general, a mXn multiplexer problem is a combination of m problems of type n.

We use concatenated multiplexer problems to illustrate the hypothesis of
Sect. 4.1 because we are sure of the completely successful generalizations existing
in these problems. For example, in the 3X3 problem, we know the completely
successful generalizations for the individual three multiplexer problems and so
the completely successful generalization for the concatenated problem can be
easily constructed. A part of the optimal classifier population [O] for the 3X3
problem is shown in Table 2. Note that for the wrong classifiers the wrong
output of one component is sufficient for the entire problem to have a wrong
output and so a greater level of generalization is possible. The size of the optimal
population |[O]| in an mXn problem where the n-multiplexer has np position
bits can be calculated by |[O]| = 2m(2nm

p ) + 2mm2n
p = 22m+npm + m2m+np

adding the number of correct and wrong classifiers together. In the 3X3 problem
|[O]| = 64 + 48 = 112.

It is surprising that although an optimal population exists for the 3X3 prob-
lem, XCS fails to evolve it. We show that this is because condition (2) of our
hypothesis in Sect. 4.1 is not satisfied in this problem.
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Fig. 3. XCS performance in the 3X3 multiplexer problem

Before we proceed further with concatenated multiplexer problems we need
to decide about the reward function to be used in these problems. We can use
the usual 1000/0 reward structure which means that a correct output from all
the component multiplexer problems will result in a reward of 1000 but if one
of them is wrong then the output is 0. Another possibility is to use a layered
reward structure, i.e. a progressive reward of 1000 with each component multi-
plexer giving the correct output. This will result in a reward of 1000c for the
concatenated problem where c is the number of components correctly classified
by the specified action. We use the 1000/0 reward function here. Later we will
show that XCS performance will be worse with layered reward as the first con-
dition (sustenance of partially successful classifiers) is violated as well in that
case.

Next, we shall see why XCS is not able to perform well in the 3X3 problem.
Remember that the three multiplexer is a rather trivial problem for XCS. There
are only two actions and XCS will quickly find the accurate and optimal classifier
population. Now, in the 3X3 problem, there are eight actions, two from each
component problem. The XCS performance on the 3X3 with 1000/0 reward
structure is shown in Fig. 3(a). (All the performance results shown in this paper
are averages of 10 runs with parameters set as follows: N = 2000, β = 0.2, α =
0.1, ε0 = 0.01, ν = 5, θGA = 25, χ = 0.8, µ = 0.04, θdel = 20, δ = 0.1, θsub =
20, P# = 0.33, pexplr = 1, pI = −10, εI = 0, and FI = 0.01 [3]). It can be seen
that XCS fails to reach 100% performance even after 25,000 steps.

To see why XCS is not able to perform well in this problem, let us look at the
completely successful classifiers for this problem. For example, 01# 01# 01# →
111 is an accurate and optimal generalization (completely successful classifier)
for the problem (the spaces between condition part of component multiplexers
are for clarity). One possible way for this completely successful classifier to form
in the population is by the recombination of the partially successful classifiers :
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Fig. 4. Necessary learning progress in 3X3 multiplexer problem

01# ### ### → 111, ### 01# ### → 111 and ### ### 01# → 111.
We have shown only the most general case of partially successful classifiers
though in reality more specific forms are likely. However, this will not change the
results we are going to illustrate. Also, remember that the GA occurs only in the
action set specified by the action 111 and these recombinations happen progres-
sively. In Fig. 4, a possible progressive formation of the completely successful
classifier from partially successful classifiers is shown. The accuracy of classifiers
are expressed as MAD. Note that the MAD of the completely successful classifier
is 0.

In particular, let’s look at the exact derivation of those numbers. Classifiers
cl1 = 01# ### ### → 111 and cl2 = ### 01# ### → 111 classify a
random input string correctly with a probability of 0.25 since there is a 50/50
chance that either of the other components is correct. Thus, the reward predic-
tions of these classifiers will be approximately 0.25 ·1000 = 250 and consequently
their reward prediction errors (MAD) will approximate 375 (see equations 1 and
2). The more specific classifier cl3 = 01# 01# ### → 111 is much closer to
the desired completely successful classifier cl4 = 01# 01# 01# → 111. Thus, cl3
should have higher fitness than cl1 and cl2 since a less complex recombinatory
event or the mutation of the appropriate two attributes can actually lead to the
generation of classifier cl4. Classifier cl3 has a probability of 0.5 to perform the
correct classification. Thus, both its reward prediction and MAD will approxi-
mate 500. With a higher MAD, classifier cl3 will actually have a smaller accuracy
than classifiers cl1 and cl2. Thus, cl3 will encounter less recombinatory events
and is consequently highly likely to be deleted soon. Moreover, in order to get
to classifiers cl1 and cl2 it is necessary that those classifiers have a lower MAD
than, for example, the completely general classifier (classifier with only don’t
care symbols in the condition part). However, the probability of a completely
general classifier to classify a random input correctly is 0.125 which results in a
MAD of 218.75 so that the completely general classifier has an even higher accu-
racy than cl1 or cl2. Thus, besides the inherent generalization pressure in XCS
[12,2], in this problem, fitness also pushes towards generality instead of towards
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specificity so that it is highly unlikely that XCS will ever evolve an accurate
representation of the problem.

Indeed, looking at the evolving population in more detail revealed that none
of the completely successful classifiers are present in the population. It seems
somewhat surprising, though, why XCS still reaches a performance of near 100%
as displayed in Fig. 3(a). A more detailed analysis revealed that XCS is actually
learning the classifiers that specify inaccurate classifications accurately (shown
on the right column in table 2). Thus, given a current match set, XCS eventually
’knows’ that seven of the eight possible classifications will be incorrect and thus
chooses the correct classification most of the time.

In Fig. 3(b), we show performance of XCS in the 3X3 multiplexer problem
when the reward is 1000c where c is the number of components correctly classi-
fied by the specified action. It can be observed that performance is worse with
this layered reward structure. This is because, with layered reward, the differ-
ence between MAD of partially successful classifiers resulting from recombina-
tion/mutation and MAD of their parent classifiers is even larger. This results in
a smaller chance for the newly generated partially successful classifiers to sustain
in the population and cause subsequent progress of successful generalizations.
This shows that layered reward does not necessarily need to be helpful.

The concatenated multiplexer problem is essentially a problem in which the
base probability of classifying an input correctly is below 0.5. Looking back at
Fig. 1 we see that the resulting problem is that XCS needs to cope with the
problem that more correct classifiers (those closer to 1.0 and thus initially closer
to 0.5) are actually less accurate due to the MAD-based accuracy. Moreover, the
problem is not symmetrical in that an accurate, maximally general classifier that
predicts payoff 0 does not have the same structure as an accurate, maximally
general classifier that predicts payoff 1000. If there are other problem properties
that can cause the same problem or if these properties are typical in interesting
problems is a subject of future research.

Note that our analysis made several simplifying assumptions. First, we as-
sumed that reward prediction and reward prediction error of a classifier imme-
diately take on the average values. However, the Widrow-Hoff delta rule allows
only an approximation of these values with an accuracy dependent on the update
rate β. Second, since classifier fitness in XCS is based on the set-relative accu-
racy of a classifier, overlapping classifiers (classifiers that match sometimes both
and sometimes either one of them) can alter fitness determination which might
cause additional problems. Third, we studied XCS in one-step, or classification,
problems. In multi-step problems the additional problem of reinforcement prop-
agation arises which can cause over-general classifiers to propagate inappropriate
reinforcement values. Thus, in multi-step problems, the determination of current
MAD is even harder.

5 Conclusion

This paper investigated the accuracy-based fitness approach in XCS and its im-
plications for a successful selectorecombinative evolutionary process. Accuracy
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of a classifier was derived from its mean absolute deviation (MAD) which is
approximated by its reward prediction error estimate. Two necessary conditions
were identified for a successful evolutionary process: (1) Sustenance of partially
successful classifiers; (2) classifiers closer to completely successful ones need to
be more accurate. Violating either of those conditions disables the evolutionary
process from evolving an accurate problem representation since there are no clas-
sifiers to propagate and/or the propagation leads towards the wrong direction.
The concatenated multiplexer problem was introduced as an example problem
that violates the second condition. Consequently, XCS was not able to evolve the
desired complete, accurate, and maximally general payoff map of the problem.

As the concatenated multiplexer problem showed, there are problems that are
inherently accuracy-misleading for the current accuracy-based fitness approach
in XCS. Thus, a modification of the accuracy definition appears to be necessary
to enable successful learning. Since accuracy is derived from the reward predic-
tion error which approximates the MAD, it appears that the MAD itself is not
an appropriate basis for XCS’s accuracy measure. Thus, it is necessary to rede-
fine the reward prediction error in XCS. One approach would be to change the
error to an upper and lower error or a two-sided error measure. Future research
needs to investigate the various possibilities for modifying the reward prediction
error in XCS.

Although a sufficiently large population size with a large mutation might be
able to create and maintain completely successful classifiers in our investigated
concatenated multiplexer problem, mutation cannot remedy the problem in gen-
eral since it does not scale up. Thus, accuracy guidance needs to be exploited
for successful selectorecombinative events. Once accuracy guidance is available
in a problem, the next step is to investigate and develop competent crossover
operators that can further speed-up and scale-up evolutionary search in XCS.
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