Abstract
The accuracy-based classifier system XCS is currently the most successful learning classifier system. Several recent studies showed that XCS can produce machine-learning competitive results. Nonetheless, until now the evolutionary mechanisms in XCS remained somewhat ill-understood. This study investigates the selectorecombinative capabilities of the current XCS system. We reveal the accuracy dependence of XCS’s evolutionary algorithm and identify a fundamental limitation of the accuracy-based fitness approach in certain problems. Implications and future research directions conclude the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.W.: How XCS evolves accurate classifiers. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001) (2001) 927–934
Butz, M.V., Pelikan, M.: Analyzing the evolutionary pressures in XCS. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001) (2001) 935–942
Butz, M.V., Wilson, S.W.: An algorithmic description of XCS. In Lanzi, P.L., Stoltzman, W., Wilson, S.W., eds.: Advances in Learning Classifier Systems: Third International Workshop, IWLCS 2000, Berlin Heidelberg, Springer-Verlag (2001) 253–272
Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, MA (1989)
Goldberg, D.E.: The design of innovation: Lessons from and for competent genetic algorithms. Kluwer Academic Publishers, Boston, MA (2002)
Holland, J.H.: Adaptation in natural and artificial systems. Universtiy of Michigan Press, Ann Arbor, MI (1975) second edition 1992.
Holland, J.H.: Adaptation. In Rosen, R., Snell, F., eds.: Progress in Theoretical Biology. Volume 4., New York, Academic Press (1976) 263–293
Kovacs, T.: XCS classifier system reliably evolves accurate, complete, and minimal representations for boolean functions. In Roy, Chawdhry, Pant, eds.: Soft computing in engineering design and manufacturing. Springer-Verlag, London (1997) 59–68
Kovacs, T.: Towards a theory of strong overgeneral classifiers. Foundations of Genetic Algorithms 6 (2001)
Kovacs, T., Kerber, M.: What makes a problem hard for XCS? In Lanzi, P.L., Stolzmann, W., Wilson, S.W., eds.: Advances in Learning Classifier Systems: Third International Workshop, IWLCS 2000. Springer-Verlag, Berlin Heidelberg (2001) 80–99
Pelikan, M., Goldberg, D.E., Lobo, F.: A survey on optimization by building and using probabilistic models. Computational Optimization and Applications 21 (2002) 5–20
Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3 (1995) 149–175
Wilson, S.W.: Mining oblique data with XCS. In Lanzi, P.L., Stolzmann, W., Wilson, S.W., eds.: Advances in Learning Classifier Systems: Third International Workshop, IWLCS 2000. Springer-Verlag, Berlin Heidelberg (2001) 158–174
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tharakunnel, K.K., Butz, M.V., Goldberg, D.E. (2003). Towards Building Block Propagation in XCS: A Negative Result and Its Implications. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45110-2_87
Download citation
DOI: https://doi.org/10.1007/3-540-45110-2_87
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40603-7
Online ISBN: 978-3-540-45110-5
eBook Packages: Springer Book Archive