Skip to main content

An Expectation-Maximisation Framework for Perceptual Grouping

  • Conference paper
  • First Online:
Visual Form 2001 (IWVF 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2059))

Included in the following conference series:

Abstract

This paper casts the problem of perceptual grouping into an evidence combining setting using the apparatus of the EM algorithm. We are concerned with recovering a perceptual arrangement graph for line- segments using evidence provided by a raw perceptual grouping field. The perceptual grouping process is posed as one of pairwise relational clustering. The task is to assign line-segments (or other image tokens) to clusters in which there is strong relational affinity between token pairs. The parameters of our model are the cluster memberships and the pair- wise affinities or link-weights for the nodes of a perceptual relation graph. Commencing from a simple probability distribution for these parameters, we show how they may be estimated using the apparatus of the EM algorithm. The new method is demonstrated on line-segment grouping problems where it is shown to outperform a non-iterative eigenclustering method.

Supported by CONACYT, under grant No. 151752.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Laird A. Dempster and D. Rubin. Maximum-likehood from incomplete data via the em algorithm. J. Royal Statistical Soc. Ser. B (methodological), 39:1–38, 1977.

    MATH  MathSciNet  Google Scholar 

  2. J. S. Bridle. Training stochastic model recognition algorithms can lead to maximum mutual information estimation of parameters. In NIPS 2, pages 211–217, 1990.

    Google Scholar 

  3. G. Guy and G. Medioni. Inferring global perceptual contours from local features. International Journal of Computer Vision, 20(1/2):113–133, 1996.

    Article  Google Scholar 

  4. F. Heitger and R. von der Heydt. A computational model of neural contour processing. In IEEE CVPR, pages 32–40, 1993.

    Google Scholar 

  5. T. Hofmann and M. Buhmann. Pairwise data clustering by deterministic annealing. IEEE Tansactions on Pattern Analysis and Machine Intelligence, 19(1), 1997.

    Google Scholar 

  6. Matas J and Kittler J. Junction detection using probabilistic relaxation. Image and Vision Computing, 11(4):197–202, 1993.

    Article  Google Scholar 

  7. A. Robles Kelly and E. R. Hancock. Grouping-line segments using eigenclustering. In Proceedings of the British Machine Vision Conference, 2000.

    Google Scholar 

  8. P. Parent and S. Zucker. Trace inference, curvature consistency and curve detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(8):823–839, 1989.

    Article  Google Scholar 

  9. Yin Peng-Yeng. Algorithms for straight line fitting using k-means. Pattern Recognition Letters, 19:31–41, 1998.

    Article  MATH  Google Scholar 

  10. P. Perona and W. T. Freeman. Factorization approach to grouping. In ECCV, pages 655–670, 1998.

    Google Scholar 

  11. S. Sarkar and K. L. Boyer. Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors. Computer Vision and Image Understanding, 71(1):110–136, 1998.

    Article  Google Scholar 

  12. A. Shashua and S. Ullman. Structural saliency: The detection of globally salient structures using a locally connected network. In Proc. 2nd Int. Conf. in Comp. Vision, pages 321–327, 1988.

    Google Scholar 

  13. J. Shi and J. Malik. Normalized cuts and image segmentations. In CVPR, pages 731–737, 1997.

    Google Scholar 

  14. Y. Weiss. Segmentation using eigenvectors: A unifying view. In IEEE International Conference on Computer Vision, pages 975–982, 1999.

    Google Scholar 

  15. L. R. Williams and D. W. Jacobs. Local parallel computation of stochastic completion fields. Neural Computation, 9(4):859–882, 1997.

    Article  Google Scholar 

  16. L. R. Williams and D. W. Jacobs. Stochastic completion fields: A neural model of illusory contour shape and salience. Neural Computation, 9(4):837–858, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robles-Kelly, A., Hancock, E.R. (2001). An Expectation-Maximisation Framework for Perceptual Grouping. In: Arcelli, C., Cordella, L.P., di Baja, G.S. (eds) Visual Form 2001. IWVF 2001. Lecture Notes in Computer Science, vol 2059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45129-3_55

Download citation

  • DOI: https://doi.org/10.1007/3-540-45129-3_55

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42120-7

  • Online ISBN: 978-3-540-45129-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics