
B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 110-125, 2000
© Springer-Verlag Berlin Heidelberg 2000

A Logical Framework for Exception Handling
in ADOME Workflow Management System♣♣♣♣

Dickson Chiu1, Qing Li2, and Kamalakar Karlapalem1

1Department of Computer Science, University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong

{kwchiu,kamal}@cs.ust.hk
2Department of Computer Science, City University of Hong Kong,

Tat Chee Avenue, Kowloon, Hong Kong

csqli@cs.cityu.edu.hk

Abstract. We have been developing ADOME-WFMS as a comprehensive
framework in which the problem of workflow exception handling can be ade-
quately addressed. In this paper, we present detailed design for ADOME-
WFMS with procedures for supporting the following: an integrated approach
starting from exception detection to exception resolution, reuse of exception
handlers, and automated resolution of expected exceptions.

1 Introduction

Exception handling in workflow management systems (WFMSs) is a very important
problem since it is not possible to specify all possible outcomes and alternatives.
Effective reuse of existing exception handlers can greatly help in dealing with
workflow exceptions. On the other hand, support for workflow evolution at run-time
is vital for an adaptive WFMS. Any WFMS that provides a comprehensive solution
for exception handling needs to provide a framework for the specification and support
for generic exception handlers that can be fine-tuned to handle different run-time
exceptions. Reuse of workflow definitions and exception handlers are very important
in the smooth operation of a flexible WFMS.

In this paper, we model a business process as a workflow (an activity) executed by
a set of problem solving agents. We use the terms activity and workflow inter-
changeably. A Problem Solving Agent (PSA) is a hardware/software system or a
human being, with an ability to execute a finite set of tasks in an application domain.
Typically an activity is recursively decomposed into sub-activities and eventually
down to the unit level called tasks (as illustrated by the example in Fig. 3). A task is
usually handled by a single PSA.The WFMS schedules and selects the PSAs for exe-
cuting the tasks. We match the tasks with PSAs by using a capability-based token/role

♣ This research has been partly funded by HKSAR RGC Grant HKUST 747/96E.

 A Logical Framework for Exception Handling 111

approach [19], where the main criterion is that the set of capability tokens of a chosen
PSA should be matched to the requirement of the task. A token embodies certain
capabilities of a PSA to execute certain functions / procedures /tasks, e.g., program-
ming, database-administration, Japanese-speaking, while a role represents a set of
responsibilities, which usually correspond to a job-function in an organization, e.g.,
project-leader, project-member, programmer, analyst, etc. Each PSA can play a set of
PSA-roles and hold a set of extra capabilities. For example, John is a Japanese ana-
lyst-programmer who is leading a small project; thus, he may play all the above-
mentioned roles (project-leader, project-member, programmer, analyst, etc.), and in
addition holds an extra capability (token) of Japanese-speaking.

In this context, we employ an Advanced Object Modeling Environment (ADOME
[23]) to not only specify generic exception handlers but also facilitate the reuse and
adaptation to handle specific instances of exception that occur at run time. In par-
ticular, our ADOME exception handling environment facility provides the following
features:
• Dynamic binding of exception handlers to classes, objects and roles, and to activi-

ties with scoping.
• Addition, deletion and modification of handlers at run-time through workflow

evolution support.
• Specifying and reusing exception handlers upon unexpected exceptions with the

Human Intervention Manager.
In contrast with traditional software systems, workflows usually evolve more fre-

quently, making reuse a vital issue. On the other hand, workflow evolution often
takes place at execution time, making it much more difficult to handle. There have
been few WFMSs designed to address these two problems (viz. reusing exception
handlers and workflow evolution) effectively and adequately. In this regard, we have
been developing ADOME-WFMS as a comprehensive framework in which the prob-
lem of workflow exception handling can be adequately addressed.

We use an integrated, event-driven approach for execution, coordination, and ex-
ception handling in our WFMS. Events (such as database events / exceptions, or
external inputs) trigger the WFMS Activity Executor to start an activity. The WFMS
Activity Executor uses events to trigger execution of tasks, while finished tasks will
inform the Activity Executor with events. Upon an exception, exception events will
trigger the WFMS Exception Manager to take control of resolutions.

In this paper, we present a logical framework of exception handling (with detailed
design and main algorithms) for ADOME-WFMS, covering reuse issues in specifying
exceptions and their handlers and a novel solution based on workflow evolution.
More details regarding classification of exceptions and handlers, and modeling as-
pects for ADOME-WFMS are given in [8] while ADOME-WFMS exception driven
workflow recovery are presented in [9]. The objectives and contribution of this
paper include: (i) the mechanism of the ADOME-WFMS and resolution of expected
exceptions, (ii) support of reuse for workflow definitions, constraints, exception types
and handlers in ADOME-WFMS, and, (iii) demonstration of the feasibility of
ADOME-WFMS for effective support of exception handling through effective reuse.

The rest of our paper is organized as follows. Section 2 describes the architecture
and basic execution mechanisms of ADOME-WFMS. Section 3 presents how

D. Chiu, Q. Li, and K. Karlapalem112

ADOME-WFMS resolves for expected exceptions. Section 4 explains how reuse can
be facilitated. Section 5 compares related work. Finally, we conclude the paper with
our plans for further research in Section 6.

2 Architecture of ADOME-WFMS

Match Maker
(Find PSA)

Exception
Manager

Recover
Manager

Task Ready

Success

Rollback
 required

House Keeping
(Recovery Mgr)

PSA

Exception
Handler(s)

C
a

s
c

a
d

e
d

E
x

c
e

p
t io

n

Compensation
Activity(ies)

Rollback
 OK

Exception

Exception

Resume / Reexecute

Resume / Reexecute

O
K

O
K

In
v

o
k

eC
a

sc
a

d
e

d
E

xc
e

p
t i

o
n

Other Task

J
u

m
p

 T
o

Failure (Exception
of parent activity)

Failure

Failure

Human
Intervention

UnexpectedExceptionHuman Resolved

Act ivi ty Executor

F
ai

lu
re

Task Life Cycle

Exception Handl ing

In
v

o
k

e

Monitors

Reject

Fig. 1. ADOME-WFMS Task Execution, Exception and Recovery

The ADOME system was developed to enhance the knowledge-level modeling capa-
bilities of OODBMS models [23], so as to allow them to more adequately deal with
data and knowledge management requirements of advanced information management
applications, especially WFMSs. The architecture of ADOME is characterized by the
seamless integration of a rule base, an OODBMS and a procedure base. Role exten-
sion to the OO model has been employed for accommodating dynamic nature of
object states and for capturing more application semantics at the knowledge level.
Roles also act as "mediators" for bridging the gap between database, knowledge base
and procedure base semantics, and facilitating dynamic binding of data object with
rules and procedures [22]. Advanced ECA rules are also supported [5,6]. The fol-
lowing components / enabling technologies of ADOME are useful for various aspects
of a WFMS, especially facilitating reuse:
• Object-oriented database (OODB) – Using OODB for the modeling and process-

ing of complex objects and their relationships is almost a consensus for building an

 A Logical Framework for Exception Handling 113

advanced WFMS and other next generation information systems. For example, the
composition hierarchy for modeling activities, sub-activities down to tasks and isa
hierarchy for PSAs not only captures more semantics than traditional relational
models, but also helps in reuse of their definitions in the WFMS. It also enables
easier maintenance, understandability and extensibility than the large number of
inter-related tables [19]. Moreover, the OO paradigm enables flexible passing of
different forms of data among agents and tasks, with the OODB providing for a
convenient general persistent storage for almost everything in the WFMS that re-
quires to be recorded.

• Roles – Roles enables PSA objects to be dynamically associated with one or more
different functions, responsibility and authority. It also captures attributes, states,
methods and knowledge specific to individual positions/agents rather than the PSA
player objects. With roles extended with multiple-inheritance, capabilities and
roles for PSAs can be much better represented in a hierarchy (c.f. [7]).

• Rules – Declarative exception handlers in the form of Event-Condition-Action
(ECA) rules enables automatic execution and exception handling based on events,
where the exceptions correspond to the event part, while the handlers correspond
to the condition-action parts. Rules can also be used for processing declarative
knowledge such as organization policies, agent selection criteria, exception han-
dling criteria, etc.

• Flexibility of objects and schema – This facilitates exception handling since real-
time modification to objects, roles, rules and even workflow evolution are required
during execution of workflow.

One of the main objectives of ADOME-WFMS is to provide extensive possibilities
for reuse. In addition to the reuse of workflow definitions [7,8], we present in this
section the modeling for exceptions, handlers and constraints that facilitate reuse. The
ADOME prototype has been built by integrating an OODBMS (ITASCA [16]) and
production inference engine (CLIPS [12]). Therefore, a WFMS can be implemented
on top of it with relative ease. The architecture and functional aspects of the resultant
ADOME-WFMS are as follows (cf. Fig. 1):
• ADOME active expert OODBMS (not shown in figure) provides a unified enabling

technology for the WFMS, viz., object and role database, event specification and
execution, rule / constraint specification and processing.

• Activity Decomposer facilitates the decomposition of activities into tasks. The user
provides the knowledge and related data to decompose activities into tasks by a
user interface.

• Organizational Database manages data objects for the organization, as well as
PSA classes, instances and their capability token (role) specifications. Besides
maintaining user-specified extensional tokens / roles systematically, intensional
token/role derivation for a PSA is also supported.

• Activity Executor coordinates execution by user-raised and database generated
events.

D. Chiu, Q. Li, and K. Karlapalem114

• Match Maker selects PSAs for executing tasks of an activity according to some
selection criteria. ([8] describes the details in capability modeling and the mecha-
nisms of the match maker of ADOME-WFMS.)

• Exception Manager handles various exceptions by re-executing failed tasks or
their alternatives (either resolved by the WFMS or determined by the user) while
maintaining forward progress.

• Recovery Manager performs various housekeeping functions, including rollback to
maintain the WFMS in consistent states. (Details can be found in [9])

2.1 Exception Handling Mechanisms of ADOME-WFMS

In this paper, we shall concentrate on using a centralized control and coordination
execution model centered on the Activity Executor of the WFMS. The Activity Ex-
ecutor monitor task execution status and enforces deadlines. For the normal task life
cycle, it initiates the PSAs to be selected by the Match Maker to carry out their as-
signed task and get the response (if any) from the PSA upon task completion. On the
other hand, if a task raises exception events or does not respond within the deadline
(i.e., time out), the Exception Manager will respond and handle it.

2.1.1 Normal Workflow Execution

An event driven activity execution model with meta-ECA-rules can be found in [8].
Moreover, this provides a unified approach for normal activity execution and excep-
tion handling [8,19]. The mechanisms of ADOME-WFMS activity execution (cf. Fig.
1) are explained as follows:
• There is an Activity Decomposer module, which generates ECA rules for automatic

coordination during the execution of workflow and stores them in the database
[8,19].

• Users and external applications can trigger the corresponding start-events to start
work.

• Upon a start-event, if the activity is a composite one, the activity executor will
raise a start-event for the first sub-activity. This process will continue recursively
downward the composition hierarchy until a leaf task is reached.1 The activity ex-
ecutor invokes the Match Maker to select the appropriate PSA(s) for the task and
then initiates the task. (Algorithm of the Match Maker is detailed in [8])

• The selected PSA will acknowledge or reject the assignment by raising a corre-
sponding reply event.

• After finishing, the assigned task successfully, the PSA replies to the activity ex-
ecutor by raising a finish-event. The Activity Executor then carries on with the
next step according to the result passed back.

• Upon failures or time out, the PSA or the system will raise an appropriate excep-
tion event to invoke the Exception Manager.

1 This approach can handle dynamic resource allocation, online modification of workflow and

exceptions in a rather flexible manner.

 A Logical Framework for Exception Handling 115

2.1.2 Detection of Events and Exceptions

The data dependency, temporal dependency and external input dependency, can be
expressed by means of a uniform framework of events, such as Data operations,
Workflow, Clock Time, External Notification, Abstract Events. Besides primitive
events, any (recursive) combination of conjunction, disjunction, or sequence of other
events can define a composite event. These events are all detected by the underlining
ADOME event facilities as described in [5,6]. Since exceptions are ADOME events,
detection of exceptions for ADOME-WFMS is well supported at run-time:
• External exceptions – events raised by external entities can be intercepted by the

WFMS. These external events must be apriori characterized as events generated
due to exceptions.

• Workflow exceptions raised by WFMS components, e.g.:
Match Maker – cannot find PSA
Activity Executor - PSA reject assignment, not enough resources
Organization Database – data constraint violations upon update
Exception Manager – (ignored) failure of task / sub-activity will cause exception

to its parent
• Workflow exceptions detected by automatic ADOME ECA rules and/or con-

straints, e.g.:
Activities cannot meet deadline
Activities constraint violation (e.g. budget exceeded)

2.1.3 Handling Exceptions

As supported by the underlying ADOME facilities, the following information will be
passed to the Exception Manager during the exception:
• source and type of exception,
• for workflow exceptions, state information of the task / activity [8],
• any extra parameters defined by the exception type (e.g., budget value).

The Exception Manager then takes control and carries out the following:
1. Perform notification if necessary.
2. Identify the appropriate exception handler(s) and execute them. Handles are mod-

eled as sub-activities in ADOME-WFMS. One or more handlers will be executed
until the problem is solved (c.f. Section 3).

3. If no appropriate exception handlers are found (i.e., an unexpected exception), or
human intervention is specified, the Human Intervention Manager (c.f. Section 4)
will be invoked. The human can then select the appropriate handler and/or per-
form workflow evolution (c.f. [10]).

4. If rollback is required, the Recovery Manager will be invoked for compensating
activities (c.f. [9]).

5. Resume / redo execution, jump to the appropriate step as decided by step 2. or 3.,
or abort the current task / sub-activity so that the exception propagate to its parent
for further handling. Though failure may propagate up the activity composition
hierarchy, this approach localizes exception and thus reduces loss of work done.

D. Chiu, Q. Li, and K. Karlapalem116

3 Handling Expected Exceptions in ADOME-WFMS

In this section, we first discuss how exception handlers are identified and executed in
ADOME-WFMS with the example in Fig 2. Then we discuss in depth how reuse is
facilitated with advanced exception modeling based on the ADOME mechanisms.

Begin
Procure-

ment

Payment
Arrange-

ment

Receive
and check

goods

End

Receive
and check

goods

Wait till
Payment

Due

Purchase
Request

COD

Credit

Begin

Get
product
informa-

tion

Fill in PR
form

Budget
Check

PR
approval

End

Begin

Match
PR, PO

and
invoice

Check
available
funding

Payment
Authoriza-

tion

Prepare
Cheque

End

(a) Requisition (repeatable)

(b) Purchase Request

(c) Payment Arrangement (Critical, Manual)

Payment
Arrange-

ment

Supplier not
found

(Replacable)

(Optional) (Critical) (Critical)(Repeatable)

Task

Activity

transi-
tion

(Replacable)

mand i to ry_hand ler=(r1=(E:PC_fa i lu re , C:True , A :EDP.manager . in fo rm)
hand ler= (r2=(E: f inanc ia l_cont ro l le r .na , C: task .budget<2000, A :approva l .PSA(depar tment .manager)

r3=(E:document .na, C:True, A: document .sender .emai l (los t))
...)

...

Requisi t ion

mand i to ry_hand le r=
 (r21=(E:a l l_except ion, C:True, A:purchas ing.manager . in form)
 ...)
...

Procurement

reexecut ion_mode=(cr i t i ca l , manual)
mand i to ry_hand le r=
 (r21=(E:a l l_except ion, C:True, A: f inance.manager . in form)
 ...)
...

Composi t ion Hierarchy

...
Payment

(d) Composit ion Hierarchy View of Some Act iv i t ies

Fig. 2. Example Workflow of Requisition Procedures

 A Logical Framework for Exception Handling 117

 Execute all relevant
mandatory ECA

handlers bound to
the current scope,
the parent activity,
etc., all the way up

the composition
hierarchy

Resolved?

Yes

 Attempt relevant
procedural handlers
of the current task/
activity one by one

until problem solved
or no more

procedural handlers

Attempt built-in
handlers of

ADOME-WFMS

According to re-
execution criteria,

re-execute the
repeatable failed
activities, choose
another execution

path for replaceable
failed activities, skip
optional failed tasks

or abort

Start with Detected
Exception

Use Human
InterventionResume

Abort current activity and
raise exception at its parent

No

Resolved?

Yes

No

Resolved?

No

Yes

Resolved?

No

Yes

Resolved or
Skipped?

Abort

Yes

No

Attempt relevant
ECA handlers

bound to the current
scope, the parent

activity, etc., all the
way up the

composition
hierarchy one by
one until problem
solved or no more

ECA handlers

Fig. 3. Flowchart for identifying and Executing Exception Handlers

3.1 Identifying and Executing Exception Handlers

One or more exception handlers may be qualified to handle an exception that occurs.
As illustrated in Fig. 3, the ADOME-WFMS Exception Manager employs the fol-
lowing priority order for selecting the appropriate exception handler:
1. Mandatory ECA handlers - Since the users specify these as mandatory, all rele-
vant handlers (with event matched and condition fulfilled) bounded to the current
scope are executed in the order of the task / sub-activity, its parent and all the way up
to the global activity. For example, a mandatory ECA rule specifies that all excep-
tions should notify the purchasing manager in the procurement activity (r21 in Fig.
2(d)) while a global mandatory ECA rule specifies all PC failures should be reported
to the EDP manager (r1 in Fig. 2(d)). In this case, the failure of a PC in the purchas-
ing department causing an exception will trigger both rules and inform the purchasing
manager and the EDP department.

These mandatory actions may or may not solve the problem causing the exception,
such as, logging and notification. If they cannot solve the problem, other categories
of exception handlers will be executed. For example, all exceptions in the ‘Payment
arrangement’ activity (cf. Fig. 2(c)) are regarded as having severe consequences, so
the financial manager will be informed (r31 in Fig. 2(d)) and manual handling of
exception is required.

Furthermore, the organization manager may later find that it is useful for all ex-
ception in a department be reported to its manager. So rules r21 and r31 are com-

D. Chiu, Q. Li, and K. Karlapalem118

bined and generalized as a new global mandatory rule r4=(E: all_exception, C: True,
A: task.department.manager.inform).
2. Procedural handlers - These are extra branches for exception handling. Each pro-
cedural handler is specific to a certain task or sub-activity under a particular context
for handling specific outcomes. Since they are explicit and context sensitive, they are
chosen before (3) ECA handlers. For example, the ‘supplier not found’ arc (cf. Fig.
2(a)) represents a procedural handler.
3. ECA handlers - These are searched from the current activity up the composition
hierarchy to allow special exception handlers to override default exception handlers if
necessary. If more than one relevant handler was declared for the same activity, the
one(s) for more specific exception type would be chosen over the more general ex-
ception type (as explained in Section 4). For example,
• The rule “If financial controller is not available, the department manager can ap-

prove any task involving less than $2000” (r2 in Fig 2(d)) will enable the depart-
ment manger to approve small purchase requests if the financial controller is not
available.

• The rule ”Send Email to the issuer if a document is lost” (r3 in Fig 2(d)) will cause
sending of an email to the supplier if an invoice is lost in the step ‘Match PR, PO
and invoice’.

4. Built-in handlers - For generic exceptions, ADOME-WFMS has built-in exception
handlers, such as:
• If a PSA rejects a task assignment or the best candidate PSA is not available, the

WFMS will find the next available PSA.
• If all PSAs capable of executing the task are busy or the required resources are

occupied, the WFMS will either wait or choose alternate execution paths.
ADOME-WFMS supports a lot of exception handling resolutions relating to PSA

assignment based on capability matching, such as amending the capabilities of PSAs
and changing capability requirements for a task instance [8]. This is important be-
cause significant portions of internal (workflow) exceptions are due to failures in
finding (suitable) PSA(s) for the execution of tasks. Moreover, ADOME supports
advanced analysis for PSA capabilities termed as "capability role/token multiple in-
heritance hierarchy" and "token derivation network theory"[8]. This increases the
chance of finding suitable PSA(s) automatically (thus avoiding PSA not available
exception), and finding alternate PSAs for repeating a task upon exception. For auto-
matic switching of PSA assignment among tasks, the above-mentioned capability
processing features are vital to the success of this resolution scheme. It should be
noted that quite a number of traditional WFMSs like Flowmark [1] and OASIS [24],
do not readily support or employ the notion of capability matching for PSA assign-
ment to tasks.
5. Re-execution criteria - ADOME-WFMS can resolve and decide for the correct
alternative PSAs or alternate execution branch automatically if the re-execution pat-
tern for a task has been specified. This feature can save many tedious explicit jumps
and aborts, especially with scoping in ADOME-WFMS (cf. Section 4). Moreover,
this way one can resolve many unexpected exceptions if re-execution helps.

 A Logical Framework for Exception Handling 119

The WFMS will automatically re-execute the repeatable failed activities; choose
another execution path for replaceable failed activities; skip optional failed tasks, if
none of the above handlers is specified. However, critical failed tasks without explicit
handlers are unexpected exceptions. (Section 3.2 discusses prevention of cascaded
exceptions and loops.) Therefore, it will result in human intervention. Upon re-
execution, in order to maintain work continuity and save starting up overhead, the
same agent is preferred unless otherwise specified. The next candidate would be the
nearest capable sibling or ancestor according to the organization structure (i.e., most
probably a member of the team or the supervisor). For example:
• The ‘Requisition’ activity specified in Fig. 2(a) is repeatable and thus ‘purchase

request’, ‘procurement’ etc. are all repeatable unless otherwise stated.
• As funding may not be available for cash on delivery (COD) or the supplier may

not be willing to deliver the ordered goods if the new company's credit limit is ex-
ceeded, the two branches following ‘Procurement’ (cf. Fig. 2(a)) are replaceable.

• Upon ‘Purchase Request’, the user may not need to ‘get product information’ be-
cause he may know that very well or he does not even know how to get such in-
formation. (E.g., the user may just specify that he wants a chair costing around
$500 and let the procurement department take care of the rest.) Hence, this task is
optional (cf. Fig. 2(b)).

• As illustrated in Fig. 2(b), tasks ‘Budget check’ and ‘PR approval’ are flagged
critical so that the sub-activity ‘Purchase Request’ will fail immediately if these
tasks are not executed. However, ‘Purchase Request’ is repeatable so that the user
can also revise the budget and /or product specification to retry for approval.

3.2 Handling Cascaded Exceptions and Loops

In order to handle cascaded exceptions effectively and avoid infinite generation of
cascaded exceptions, the following safety measures are employed in ADOME-
WFMS:
• Notification within the exception handling activity to the human deciding on the

handler for an unexpected exception (e.g. to report even expected exceptions).
• If cascaded exceptions occur, the same human should be notified for better man-

agement and decisions.
• Tighter constraints, such as deadline and budget, can be introduced to avoid the

exception handling activity to run indefinitely and let the control pass back for
human decisions.

• When a human decides a jump back to a previously executed step as exception
handler (including simple redoing of the currently failed task), there may be a po-
tential danger of looping and the human will thus be warned.

• The Activity Executor will keep track of the sequence of executed tasks. If the
same task in the same context is executed for over a certain number of times (or a
specified iteration count), a warning or exception will be raised for human inter-
vention or alternative actions.

D. Chiu, Q. Li, and K. Karlapalem120

• Backtracking so that the human can undo some of the decisions taken (if possible)
and finalize on the resolution once all different aspects of exception handling are
taken care of.

4 Exception Modeling for Reuse in ADOME-WFMS

Exceptions

Handlers

ECA-Rules

Activity
Classes

Activity
Instances

Instance
CA (determines)

E (triggers) Bind

Bind

Raises

Isa

External
Exceptions

Internal
Exceptions

Expected
Exceptions

Unexpected
Exceptions

External
Expected

Exceptions

Internal
Expected

Exceptions

Internal
Unxpected
Exceptions

External
Unexpected
Exceptions

System
Handled

Trivial ly
Handled

W F M S
Handled

PSA
Reject

No PSA ...
...

Exception Class Hierarchy

Activit ies, Exceptions and Handlers as First Class Objects

Figure 4. Activities, Exceptions, and Handlers as first-class objects

Figure 4 illustrates the main entities and relationships in ADOME-WFMS regarding
to exception handling. These entities are all modeled as first-class objects. In par-
ticular, the class exceptions is a subclass of class events. Taxonomy of exceptions and
handlers can be found in [8]. Handlers are modeled as sub-activities so that they can
carry out any complicated actions; and nested exceptions are supported by recursive
invoking of the Exception Manager.

In ADOME-WFMS, declarative exception handlers in the form of ECA rules can
be bound to selected classes, objects and roles. Furthermore, handlers can be speci-
fied within the scope of different activity and sub-activity levels, i.e., the handler
applies not only to the body of the target activity but also to all its sub-activities and
tasks.

 A Logical Framework for Exception Handling 121

Similarly, human intervention requirements of exception handling (automatic,
warning, cooperative and manual) and re-execution patterns (optional, critical, re-
peatable and replaceable) for sub-activities and tasks are specified within the scope of
this composition hierarchy, with the lowest level taking priority in specification and
thus overriding those of higher levels.

The ADOME-WFMS Human Intervention Manager supports the user to modify
all the above declarations and associations at run-time as described in [8,10]. The
power of ADOME-WFMS in reuse over other systems (such as [3,4,11,19,20]) is
mainly due ADOME’s ability in dynamic binding of rules to different dimensions
(objects, roles, sub-activities, etc.) at run-time as explained below. However, a meth-
odology in workflow design to facilitate reuse of exception handlers is beyond the
scope of this paper.

4.1 Reusing Exception Handlers

Since exceptions can be common in a WFMS, reusing exception handlers is vital to
the effectiveness, user-friendliness and efficiency of the WFMS. In ADOME-
WFMS, mechanisms for reuse of exception handlers follow from its structure:
• For procedural exception handlers, arcs from more than one peer tasks / sub-

activities at the same level (siblings inside the same parent activity) can lead to the
same exception handler for some degree of sharing.

• Because of scoping, only one declarative exception handler is required for each
exception type for each activity composition hierarchy (as explained in the previ-
ous section).

• Declarative exception handlers are first-class ECA rule objects. A rule object r is
declared and defined once and then can be associated with more than one scope by
repeated binding. (E.g., Bind r9 to payment, requisition).

• Since exceptions are events (which are first-class objects in ADOME), exception
classes are also arranged into an ‘isa’ hierarchy. Thus, an exception handler for a
super-class will also handle an exception of a sub-class. (E.g., an exception han-
dler for program_error will handle subscript_out_of_range also.)

• Extending the event-part with ‘or’ event composition can generalize exception
handlers (e.g., E: program_error ∨ PC_failure, A: EDP.manager.inform), and in-
crease the applicability of the exception handlers.

• Meta-level rules can be instantiated through parameters and supplied methods to
specify rules, such as budget rules instantiated with actual budget figure.

4.2 Reusing Constraint Definitions

In order for modification of task instances and workflow evolution to be in accor-
dance with users’ requirement, we employ a strategy of associating consistency con-
straints with appropriate entities of different levels and dimensions as explained be-
low. When constraints are violated at run-time, appropriate exceptions will be raised
for handling. Since constraints are also implemented as ECA rules in ADOME-

D. Chiu, Q. Li, and K. Karlapalem122

WFMS, reuse and evolution of consistency constraints are both possible and similar
to those of exceptions and exception handlers in general. Associating constraints to
different levels and dimensions can be naturally specified with ADOME’s facilities:
• Organization Composition Hierarchy - organization, units, sub-units and groups.

Reuse is supported through inheritance down the composition hierarchy. The ob-
jective of the organization is also that of its units, sub-units and groups, while indi-
vidual units can only have their more specific objectives not violating that of the
organization.

• Activity Composition Hierarchy – projects (any collection of activities), activities,
sub-activities, tasks. Reuse is supported through inheritance down the composition
hierarchy. Deadlines and budgets are typical examples. Furthermore, scoping
produces further flexibility for handling violation of constraints so that failed sub-
activities (ignored exceptions) can be remedied by a higher-level activity.

• Role/Token Hierarchy – Positions and capability. Reuse is supported through
multiple-inheritance down the hierarchy. For example, programmers (and hence
senior programmers) are allowed to log on to the development computer account;
however, the minimum productivity index of a senior programmer can be specified
to be higher than that of a junior programmer by overriding rules as supported by
ADOME [5,6].

• Any class and sub-classes of objects in ADOME-WFMS (such as PSA and re-
sources).

• Combination of above levels and dimensions. As supported by ADOME [5,6],
constraints and rules are first class objects and can be bound to objects, classes,
and roles repeatedly. These can also be generalized or specialized by the ‘or’ and
‘and’ connectors. For example, programmers, engineers and managers should be
university graduates.

4.3 Reusing Compensation Transactions for Workflow Recovery

Compensation transactions are considered as part of the exception handling procedure
and are modeled as sub-activities of the exception handlers in ADOME-WFMS. In
fact, the execution and definition of compensation transaction are implemented as
ECA rules, which corresponds to the integrated framework of event-driven activity
execution in ADOME-WFMS. This allows different compensation transactions to be
executed according to the exception type and general conditions under execution [9].
The reuse of definitions of compensation transactions follows from its rich set of
features in reuse of exception handlers:
• Once a compensation transaction is defined, they can be used in different contexts.
• "Simple rollback" (restoring the previous value or state of the object like handling

traditional database update in workflow) and "mark void" (keeping useful docu-
ments or partial work done for reference) are implemented as pre-defined compen-
sation transaction.

• The activity decomposition hierarchy also provides scoping for associating com-
pensation transaction with a sub-activity tree.

 A Logical Framework for Exception Handling 123

• A compensation transaction can be bound to each rollback class and sub-class of
objects (also for roles and sub-roles).

• Dynamic use of compensation transactions according to different exception events
can be facilitated with the flexibility in event definition: event isa-hierarchy and
event ‘or’ composition.

5 Related Work

A classical article on exception handling is [2], which focused on database aspects of
exception and handling techniques instead of workflow systems. On the other hand,
notable advanced WFMSs have been developed in the past years [1, 4, 13, 18, 19, 21,
24, 25]. Among them, TriGSflow [16] and the work of Kumar et al [18], perhaps
have the closest basic design with ours in that it adopts an OO design, and utilizes
rules and roles. However, they did not address a variety of exception conditions or
use capability matching for tasks and agents.

Ellis, et al [14] is among the earlier work in workflow evolution. WIDE [4] used
object and rule modeling techniques and suggested some measures in handling ex-
ceptions. Exceptions were classified but not handling approaches. They also ad-
dressed reuse and management of exception handlers with implementation details, but
not adequately considered high level semantics, especially inter-relationship among
entities in a WFMS. Their workflow evolution primitives were not at a semantic
level. PROSYT [11] addressed inconsistencies and deviations in general process
support systems (where WFMS is considered as a kind of process support systems),
but the contribution was more on the formal modeling than semantic modeling. [3]
presented a framework for tolerating exceptions in WFMS close to ours [8], but with-
out details in logical and implementation levels. [20] adopted a knowledge-base
approach to handling exceptions in WFMS, with strong emphasis on agent manage-
ment. [26] studied the categories of exceptions in WFMS but did not involve
workflow evolution.

Flowmark uses Sagas and flexible transactions for modeling workflow exception
handling; and its extension, Exotica/FMDC [1], handles disconnected agents. Since
Flowmark only finds out all possible candidates for task execution and then lets them
volunteer for the execution instead of using capability matching, effectiveness and
fairness may be impaired. WAMO [13] also uses Sagas and flexible transactions for
supporting workflow exception handling. It also offers a preliminary classification of
exceptions in which we have made some extensions in our taxonomy of exception
categories (cf. [8]). Similarly, other works like [15], ConTract [25] and OPERA [17]
focus on transactional aspects and thus on lower level issues.

In summary, other workflow systems either do not address exception-handling
problems comprehensively or concentrate only on extended transaction models. Fur-
thermore, few systems have advocated (let alone supported) an extensive meta-
modeling approach (based on PSAs, match-making, exception handling, etc.). Com-
pared with the systems close to us, ADOME-WFMS has the most features to facilitate
reuse.

D. Chiu, Q. Li, and K. Karlapalem124

6 Conclusion

This paper has presented adaptive exception handling in ADOME-WFMS, a flexible
WFMS based on ADOME; an active OODBMS extended with role and rule facilities.
Compared with other research on this topic, ADOME provides an improved envi-
ronment for developing a WFMS, which can adapt to changing requirements, with
extensive support for reuse. In particular, the resultant system (i.e., ADOME-WFMS)
supports a rich taxonomy of exception types and their handling approaches, and a
novel augmented solution for exception handling based on workflow evolution.
Effective reuse of workflow definitions, exceptions, handlers and constraints in
ADOME-WFMS has also been presented. This paper has also described in detail,
how expected exceptions are actually resolved with the ADOME-WFMS Exception
Manager. It should be noted that, though exception handling is highly automated in
ADOME-WFMS by scoping, binding and reuse, human intervention management
must be provided to support for (totally) unexpected exceptions and drastic workflow
evolutions. ADOME-WFMS is currently being built on top of the ADOME prototype
system, with a web-based user interface [10] to accommodate the whole range of
activities.

References

1. G. Alonso, et al. Exotica/FMDC: a workflow management system for mobile and discon-
nected clients. Distributed & Parallel Databases, 4(3):229-247 (1996).

2. A. Boridga, Language Features for Flexible Handling of Exceptions, ACM Trans. on Da-
tabase Systems (1985).

3. A. Borgida and T. Murata, A Unified Framework for Tolerating Exceptions in
Workflow/Process Models - A Persistent Object Approach, International Joint Conference
on Work Activities Coordination and Collaboration (WACC ’99), San Francisco (1999).

4. F. Casati, G. Pozzi. Modeling and Managing Exceptional Behaviors in Workflow man-
agement Systems, Proceedings of CoopIS’99, Edinburgh, Scotland, September 1999

5. L. C. Chan and Q. Li. Devising a Flexible Event Model on top of a Common Data /
Knowledge Storage Manager. In Proceedings of 6th Intl. Workshop on Information Tech-
nologies and Systems (WITS '96), Cleveland, Ohio, pp.182-191 (1996).

6. L. C. Chan and Q. Li. An Extensible Approach to Reactive Processing in an Advanced
Object Modeling Environment. In Proceedings of 8th Intl. Conf. on Database and Expert
Systems Applications (DEXA '97), LNCS(1308), pp.38-47, Toulouse, France (1997).

7. D. K. W. Chiu, K. Karlapalem and Q. Li. Developing a Workflow Management System in
an Integrated Object-Oriented Modeling Environment. In Proceedings of 6th Int’l Conf. on
Sofware Engineering and Knowledge Engineering (SEKE’98), pp.71-78, San Francisco
(1998).

8. D.K.W. Chiu, Q. Li and K. Karlapalem, "A Meta Modeling Approach for Workflow Man-
agement Systems Supporting Exception Handling", Special Issue on Method Engineering
and Metamodeling, Information Systems, Elsevier Science, 24(2):159-184 (1999).

9. D.K.W. Chiu, Q. Li and K. Karlapalem, Facilitating Exception Handling with Recovery
Techniques in ADOME Workflow Management System, Journal of Applied Systems

 A Logical Framework for Exception Handling 125

Studies, Cambridge International Science Publishing, Cambridge, England (2000 to ap-
pear).

10. D.K.W. Chiu, Q. Li and K. Karlapalem, A Web-based Interface for ADOME Workflow
Management System Facilitating Exception Handling, submitted to WISE’2000.

11. G. Cugola, Inconsistencies and Deviations in Process Support Systems, PhD Thesis,
Politecnico di Milano (1998)

12. http://www.ghg.net/clips/CLIPS.html
13. J. Eder and W. Liebhart. The Workflow Activity Model WAMO. In Proceeding of

CoopIS-95, pp 97-98. (1995).
14. S. Ellis et al , Dynamic Change within Workflow Systems, Proceedings of the Confer-

ence on Organizational Computing Systems (1995).
15. D. Georgakopoulos, M. F. Hornich and F. Manola. Customizing Transaction Models and

Mechanisms in a Programmable Envioronment Supporting Reliable Workflow Automa-
tion. IEEE Transactions on Knowledge and Data Engineering. 8(4):630-649 (1996).

16. Ibex Corporation. http://www.ibex.ch/
17. C. Hagen and G. Alonso, Flexible Exception Handling in the OPERA Process Support

System, 18th International Conference on Distributed Computing Systems (ICDCS 98),
Amsterdam, The Netherlands (1998).

18. G. Kappel, et.al. Workflow Management Based on Objects, Rules, and Roles. IEEE
Bulletin of the Technical Committee on Data Engineering 18(1)11-18 (1995).

19. K. Karlapalem, H. P. Yeung and P. C. K. Hung. CapBaseED-AMS - A Framework for
Capability-Based and Event-Driven Activity Management System. In Proceeding of
COOPIS ‘95, pp. 205-219 (1995).

20. Mark Klein and Chrysanthos Dellarocas, A Knowledge-Based Approach to Handling
Exceptions in Workflow Systems, Proceedings of the Third International Conference on
Autonomous Agents, Seattle, Washington (1999).

21. A. Kumar, et.al. A framework for dynamic routing and operational integrity controls in a
workflow management system. In Proceedings of the Twenty-Ninth Hawaii International
Conference on System Sciences 3:492-501 (1996).

22. Q. Li and F. H. Lochovsky. Roles: Extending Object Behaviour to Support Knowledge
Semantics. In Proceeding of Int'l. Symposium on Advanced Database Technologies and
Their Integration, Nara, Japan, pp. 314-322 (1994).

23. Q. Li and F. H. Lochovsky. ADOME: an Advanced Object Modeling Environment.
IEEE Transactions on Knowledge and Data Engineering, 10(2):255-276 (1998).

24. C. Martens and C.C. Woo. OASIS: An Integrative Toolkit for Developing Autonomous
Applications in Decentralized Environments. Journal of Organizational Computing,
New Jersey: Ablex Publishing Corporation, 7(2&3):227-251 (1997).

25. A. Reuter and F. Schwenkreis. ConTacts - A Low-Level Mechanism for Building Gen-
eral-Purpose Workflow Management Systems. IEEE Bulletin of the Technical Committee
on Data Engineering 18(1)4-10 (1995).

26. Saastamoinen, H. T., On the Handling of Exceptions in Information Systems, Ph.D.
Thesis, University of Jyväskylä (1995).

http://www.ibex.ch/

	1	Introduction
	2	Architecture of ADOME-WFMS
	2.1	Exception Handling Mechanisms of ADOME-WFMS

	3	Handling Expected Exceptions in ADOME-WFMS
	3.1	Identifying and Executing Exception Handlers
	3.2	Handling Cascaded Exceptions and Loops

	4	Exception Modeling for Reuse in ADOME-WFMS
	4.1	Reusing Exception Handlers
	4.2	Reusing Constraint Definitions
	4.3	Reusing Compensation Transactions for Workflow Recovery

	5	Related Work
	6	Conclusion
	References

