
Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

Rogerio de Lemos
Cristina Gacek
Alexander Romanovsky (Eds.)

Architecting
Dependable Systems

^^1 Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Rogerio de Lemos
University of Kent, Computing Laboratory
Canterbury, Kent CT2 7NF, United Kingdom
E-mail: r.deiemos@ukc.ac.uk
Cristina Gacek
Alexander Romanovsky
University of Newcastle upon Tyne, School of Computing Science
Newcastle upon Tyne NEl 7RU, United Kingdom
E-mail: {cristina.gacek, alexander.romanovsky}@ncl.ac.uk

Cataloging-in-PubMcation Data applied for

A catalog record for this book is available from the Library of Congress

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche BibUothek lists this publication in the Deutsche NationalbibUographie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): D.2, D.4

ISSN 0302-9743
ISBN 3-540-40727-8 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyrigiit. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science-^Business Media GmbH

http://www.springer.de

© Springer-Veriag Beriin Heidelberg 2003
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Christian Grosche, Hamburg.
Printed on acid-free paper SPIN: 10927540 06/3142 5 4 3 2 10

Foreword

As software systems become more and more ubiquitous, the issues of dependability
become more and more critical. And, as solutions to these issues must be planned in
from the beginning of a system - grafting them on after the system has been built is
very difficult - it is appropriate that these issues be addressed at the architectural
level.

However, how they are to be addressed at this level is a critical question. Are the
solutions to these dependability issues to be considered explicitly in the architecture,
or are they to be considered implicitly by being buried in the design and
implementation instead of the architecture? If they are to be considered explicitly, are
they integral to the entire architecture or are they componentized within that
architecture?

An example analogy for whether to make solutions explicit or implicit can be
found in the issue of distribution. Do you want to make distribution an architecturally
explicit issue or do you want the architecture to be independent of placement and
topological issues. For example, in the quest for a generic architecture to cover a
product line that ranged from centralized to a variety of distributed systems, it was
decided to make the architecture distribution free (IWSAPF3, LNCS 1951, Springer-
Verlag, 2000). The solution incorporated an ORB (Object Request Broker)-like
architectural entity in the system and buried the details of placement and topology
into that component, thereby removing distribution as an explicit architectural issue.
Similarly we might treat dependability issues in the same way, burying them in
components that worry about how to provide them rather than making them explicitly
part of the architecture.

If we decide to make solutions explicit, then there is still the issue of whether they
are integral across the entire architecture or whether they are componentized within
that architecture. If integral, then one way to ensure that all the components in an
architecture conform appropriately would be to define a dependability-property-
specific architectural style (Perry/Wolf, SEN 17:4, Oct. 1992) that all components in
the architecture must conform to. An example of this use of an architectural style for
fault handling was defined and used in the above-mentioned product line architecture.

Far more interesting architecturally is an attempt to find solutions to dependability
problems that are compositional, or additive, and that can be viewed as independent
components (Brandozzi/Perry, WADS 2002). The logical distinction between
components and connectors is very suggestive in this direction. Connectors can be
much richer than just means of communications (their initial and basic use). Indeed,
the entire Coordination conference series is built around the premise of separating
coordination from computation - in effect using connectors among computations to
provide their coordination. We can approach dependability problems in the same way
or by pushing the envelope of connectors even further. Not only can connectors be
coordinative, they can be mediative as well (Keynote, Coordination97). Indeed,
mediation is often precisely what we want to do in the context of making our systems
more dependable.

VI Foreword

In this book we have a variety of approaches for considering the problems of
dependability architecturally. Some push in these new and interesting directions,
others continue in more traditional modes. It is my belief that we will make our most
significant progress exploiting these new possibilities in looking for compositional
means for achieving dependability.

July 2003 Dewayne E. Perry
Motorola Regents Chair in Software Engineering

The University of Texas at Austin

Preface

Architectural representations of systems have been shown to be effective in assisting
the understanding of broader system concerns by abstracting away from details of the
system. The dependability of systems is defined as the reliance that can justifiably be
placed on the service the system delivers. Dependability has become an important
aspect of computer systems since everyday life increasingly depends on software.
Although there is a large body of research in dependability, architectural-level
reasoning about dependability is only just emerging as an important theme in software
engineering. This is due to the fact that dependability concerns are usually left until
too late in the process of development. Additionally, the complexity of emerging
applications and the trend of building trustworthy systems from existing
untrustworthy components are demanding that dependability concerns be considered
at the architectural level.

This book results from an effort to bring together the research communities of
software architectures and dependability. It was inspired by the ICSE 2002 Workshop
on Architecting Dependable Systems (WADS 2002), where many interesting papers
were presented and lively discussions took place. The book addresses issues that are
currently relevant towards improving the state of the art for architecting dependable
systems. Its contents are a selection of peer-reviewed papers stemming from some
original WADS 2002 papers and some invited ones. The book is structured in four
parts: software architectures for dependability, fault tolerance in software
architectures, evaluation of dependability at the architecture level, and industrial
experiences.

Part I is on architectures for dependability. It consists of five papers proposing
special architectural solutions enhancing system dependability. Dependability is a
generic multi-faceted concept encompassing a number of attributes characterizing
various properties of a computer system. The papers included in this part address
different aspects of dependability. The first paper entitled "Intrusion-Tolerant
Architectures: Concepts and Design" was written by Verissimo, Neves, and Correia.
The authors introduce the ideas of intrusion tolerance, describe the fundamental
concepts behind it, tracing their connection to classical fault tolerance and security,
discuss the main strategies and mechanisms for architecting intrusion tolerant
systems, and report on recent advances in distributed intrusion tolerance system
architectures. The second paper, "Improving Dependability of Component-Based
Systems via Multi-versioning Connectors," by Medvidovic, Mikic-Rakic, and Mehta,
presents an architectural solution intended for achieving higher dependability of
software systems in which components can be upgraded. The approach makes use of
the diversity between the old and the new versions of a component and leverages
explicit software connectors, called multi-versioning connectors, to ensure
dependable system composition and evolution, possibly during run time. The paper
discusses implementation and evaluation results in the context of a family of
architectural implementation platforms. In the next paper, "Increasing System
Dependability through Architecture-Based Self-Repair," Garlan, Cheng, and Schmerl
introduce mechanisms that allow a system to adapt at run time in order to
accommodate varying resources, system errors, and changing requirements. In

VIII Preface

particular, the paper outlines a solution in which stylized architectural design models
are maintained at run time as a vehicle for automatically monitoring system behavior,
for detecting when that behavior falls outside of acceptable ranges, and for deciding
on a high-level repair strategy. The next paper of part 1, "Dependability in the Web
Services Architecture," was written by Tartanoglu, Issarny, Romanovsky, and Levy.
This paper discusses approaches to building dependable systems based on the Web
services architecture. More specifically, it surveys the basic fault tolerance
mechanisms, considering both backward and forward error recovery mechanisms, and
shows how they are adapted for dealing with the specific characteristics of the Web in
the light of ongoing work in the area. The last paper of Part 1, "A Component Based
Real-Time Scheduling Architecture" by Fohler, Lennvall, and Dobrin, proposes a
component-based architecture for schedule reuse. Instead of using traditional
approaches tying the temporal constraints, scheduler, and system architecture
together, the authors put forward methods that allow for the reuse of existing
schedules on various system architectures. In particular, they show how a schedule
developed for a table-driven, dynamic or static priority paradigm can be reused in the
other schemes. The proposed architecture disentangles actual scheduling from
dispatching and other kernel routines and introduces a small common interface
suitable for a variety of scheduling schemes viewed as components.

Part 2 of the book addresses issues of fault tolerance in software architectures. Its
papers are based on the common underlying assumption that faults will always be
present in software systems and consequently must be tolerated at run time. Unlike
previous efforts, these papers address fault tolerance at the architectural level, rather
than focusing only on the implementation. The first paper, "A Fault-Tolerant
Software Architecture for Component-Based Systems" by Guerra, Rubira, and de
Lemos, presents an approach for structuring fault-tolerant component-based systems
based on the C2 architectural style. The aim is to leverage the dependability
properties of component-based systems by providing a solution at the architectural
level that is able to guide the structuring of unreliable components into a fault-tolerant
architecture. The paper by Dias and Richardson, "The Role of Event Description in
Architecting Dependable Systems," discusses the importance of event description as
an integration element for architecting dependable systems and presents how the
authors' current work in defining an interchangeable description language for events
can support the development of complex systems. The final paper in Part 2,
"Architectural Mismatch Tolerance" by de Lemos, Gacek, and Romanovsky, moves
towards ensuring that components in complex software systems are interconnected in
a way that allows architectural mismatches to be tolerated, the resulting architectural
solution being a system based on existing components that are independent in their
nature but are able to interact in well-understood ways. Towards fulfilling this goal,
the authors apply general principles of fault tolerance in the context of dealing with
architectural mismatches.

Dependability models allow us to compare different architectural solutions and run
analysis for identifying both dependability bottlenecks and critical parameters to
which the system is sensitive. The four papers of Part 3 of the book deal with
dependability modeling and analysis at the architectural level of systems. The first
paper "Quality Analysis of Dependable Systems: A Developer Oriented Approach"
by Zarras, Kloukinas and Issarny presents an architecture-based approach for the

Preface K

quality analysis of dependable systems. Instead of the traditional approaches that
employ methods and tools that have a strong formal basis, the authors advocate as a
starting point the representation of a system using an architectural description
language. Based on this representation, the qualitative and quantitative analysis can
then be performed using, respectively, for example, model checking tools like SPIN,
and a reliability analysis tools like SURE-ASSIST. In the second paper, entitled
"Stochastic Dependability Analysis of System Architecture Based on UML Models,"
the authors Majzik, Pataricza, and Bondavalli describe an approach in which
dependability modeling is performed on the architectural representation of a system,
which is extended by the parameters needed for the dependability analysis. This
approach avoids building a dependability model from scratch, thus guaranteeing by
the process a consistency between the architectural and dependability models. The
quantitative evaluation of the system availability and reliability is performed by
transforming UML diagrams to Timed Petri Net models. In the third paper entitled
"Specification-Level Integration of Simulation and Dependability Analysis," the
authors Gokhale, Horgan and Trivedi outline an approach that seeks a three-way
integration, namely, formal specification, simulation and testing, and performance and
dependability analysis. The basis for this integration is provided by the measurements
obtained during simulation and testing, which are then used to parameterize the
quantitative model of the system. The approach is facilitated by the Telcordia
Software Visualization and Analysis Tool Suite (TSVAT), developed at Telcordia
Technologies for architectural specifications of systems, which uses the Specification
and Description Language (SDL) and Stochastic Reward Nets (SRNs). In the final
paper of Part 3, "Using Architectural Properties to Model and Measure Graceful
Degradation," Shelton and Koopman present a scalable architectural solution for
modeling and measuring the graceful degradation of systems. Considering that
graceful degradation is a viable approach for improving system dependability, the
authors have explicitly defined it as a system property, which can be represented at
the architecture level, thus enabling an analysis of how well the system degrades in
the presence of multiple component failures. The approach consists of a software data
flow graph for determining dependency relationships among components, and a utility
model that provides a framework for comparing the relative utility of system
configurations. Dependency relationships among components enable efficient
elimination of invalid configurations, thus reducing the complexity of determining the
utility function for all possible system configurations.

Dependability is a crucial aspect of computer systems that obviously directly
impacts organizations developing safety-critical systems, yet other organizations are
also impacted, since having more dependable products facilitates maintaining, if not
increasing, market share. Part 4 of this book provides some insights on dependability
in current industrial settings. It consists of the paper "Dependability Experience in
Philips" by van der Linden, where an overview of dependability issues encountered in
12 years within several business units of Philips is presented. The main focus is on
architectural concepts and patterns that help to solve dependability issues in systems.

The topic of architecting dependable systems is very timely and work should
continue in this area. The follow-on ICSE 2003 Workshop on Software Architectures
for Dependable Systems (WADS 2003) is one of the means to foster related further
work. As editors of this book, we are certain that its contents will prove to be

X Preface

invaluable for the area and are greatly thankful to the many people who contributed
towards its success. These include the authors of the various contributions for the
excellence in their work, the WADS 2002 participants for their active support and
lively discussions, and Alfred Hofmann from Springer-Verlag for believing in the
idea of this book and assisting us in getting it published. Last, but not least, we are
also thankful to the reviewers who devoted their time and effort towards guaranteeing
the high-quality level found in the various contributions. They are L. Andrade,
M.S. Dias, D. Garlan, P.A. Guerra, V. Issamy, C. Kloukinas, P. Koopman, N. Levy,
N. Medvidovic, N.F. Neves, D.E. Perry, P. Puschner, D. Richardson, B. Schmerl,
C.M.F. Rubira, C. Shelton, F. van der Linden, and anonymous reviewers.

July 2003 Rogerio de Lemos
Cristina Gacek

Alexander Romanovsky

Table of Contents

Part 1. Architectures for Dependability

Intrusion-Tolerant Architectures: Concepts and Design 3
Paulo Esteves Verissimo, Nuno Ferreira Neves, and Miguel Pupo Correia

Improving Dependability of Component-Based Systems via Multi-versioning
Connectors 37

Nenad Medvidovic, Marija Mikic-Rakic, and Nikunj Mehta

Increasing System Dependability through Architecture-Based Self-Repair ... gj
David Garlan, Shang-Wen Cheng, and Bradley Schmerl

Dependability in the Web Services Architecture 90
Ferda Tartanoglu, Valerie Issarny, Alexander Romanovsky,
and Nicole Levy

A Component Based Real-Time Scheduling Architecture 110
Gerhard Fohler, Tomas Lennvall, and Radu Dobrin

Part 2. Fault Tolerance in Software Architectures

A Fault-Tolerant Software Architecture for Component-Based Systems
Paulo Asterio de C. Giterra, Cecilia Mary F. Rubira,
and Rogerio de Lemos

The Role of Event Description in Architecting Dependable Systems
Marcio Dias and Debra Richardson

Quality Analysis of Dependable Systems: A Developer Oriented Approach ...
Apostolos Znrras, Christos Kloukinas, and Valerie Issarny

Stochastic Dependability Analysis of System Architecture Based on UML
Models

Istvdn Majzik, Andrds Pataricza, and Andrea Bondavalli

129

150

Architectural Mismatch Tolerance
Rogerio de Lemos, Cristina Gacek, and Alexander Romanovsky

Part 3. Dependability Analysis in Software Architectures

197

219

Table of Contents

Specification-Level Integration of Simulation and Dependability Analysis 245
Swapna S. Gokhale, Joseph R. Morgan, and Kishor S. Trivedi

Using Architectural Properties to Model and Measure Graceful Degradation .. 267
Charles Shelton and Philip Koopman

Part 4. Industrial Experience

Dependability Experience in Philips 293
Frank van der Linden

Author Index 309

