Skip to main content

Join Indices as a Tool for Spatial Data Mining

  • Conference paper
  • First Online:
Temporal, Spatial, and Spatio-Temporal Data Mining (TSDM 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2007))

  • 1043 Accesses

Abstract

The growing production of maps is generating huge volume of data stored in large spatial databases. This huge volume of data exceeds the human analysis capabilities. Spatial data mining methods, derived from data mining methods, allow the extraction of knowledge from these large spatial databases, taking into account the essential notion of spatial dependency. This paper focuses on this specificity of spatial data mining by showing the suitability of join indices to this context. It describes the join index structure and shows how it could be used as a tool for spatial data mining. Thus, this solution brings spatial criteria support to non-spatial information systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrienko, N. and Andrienko, G.: Interactive Maps for Visual Data Exploration, International Journal of Geographical Information Sciences 13 (4), pp. 355–374 (1999). See also URL: http://borneo.gmd.de/and/icavis.

    Article  Google Scholar 

  2. Anselin, L.: Local indicators of spatial association-LISA. Geographical Analysis, 27, 2, pp. 93–115 (1995)

    Article  Google Scholar 

  3. Bédard, Y., Lam, S., Proulx, M.J., Caron, P.Y. and Létourneau, F.: Data Warehousing for Spatial Data: Research Issues, Proceedings of the International Symposium Geomatics in the Era of Radarsat (GER’97), Ottawa (1997) pp. 25–30

    Google Scholar 

  4. Bennis K., David B., Quilio I., Thévenin J-M. and Viémont Y..: GéoGraph: A Topological Storage Model for Extensible GIS:, Proc. of Auto-Carto’10, Baltimore, USA, 368–392 (1991)

    Google Scholar 

  5. Burtschy, B. and Lebart, L.: Contiguity analysis and projection pursuit. In: Applied Stochastic Models and Data Analysis, R. Gutierrez and M.J.M. Valderrama, Eds, World Scientific, Singapore, pp. 117–128 (1991)

    Google Scholar 

  6. Card, S.K., Mackinlay, J.D. and Shneiderman, B.: Readings in Information Visualization: Using Vision to Think, Morgan Kaufmann (1999)

    Google Scholar 

  7. Cliff A.D., Ord J.K.,: Spatial autocorrelation, Pion, London (1973)

    Google Scholar 

  8. Egenhofer M.J. and Sharma J.: Topological Relations Between Regions in R2 and Z2, Advance in Spatial Databases, 5th International Symposium SSD’93. pp 316–331. Singapore (1993) Springer-Verlag.

    Google Scholar 

  9. Ester, M., Frommelt, A., Kriegel, H.-P., Sander, J.: Algorithms for Characterization and Trend Detection in Spatial Databases”, Proc. 4th Int. Conf. on Knowledge Discovery and Data Mining, New York, NY (1998).

    Google Scholar 

  10. Ester, M., Kriegel, H.-P., Sander, J.: Spatial Data Mining: A Database Approach, Proceedings of the 5th Symposium on Spatial Databases, Berlin, Germany (1997)

    Google Scholar 

  11. Fayyad et al.: Advances in Knowledge Discovery and Data Mining, AAAI Press / MIT Press (1996)

    Google Scholar 

  12. Fisher, M. and Getis, A.: spatial analysis-spatial statistics, behavioural modelling and neurocomputing, Berlin, Springer (1997)

    Google Scholar 

  13. Fotheringham, S. and Rogerson, P.: Spatial Analysis and GIS, Taylor and Francis (1995)

    Google Scholar 

  14. Han J., Cai Y. and Cerone N.: Knowledge Discovery in Databases; An Attribute-Oriented Approach., Proceedings of the 18th VLDB Conference. Vancouver, B.C. (1992) pp. 547–559. See also URL: http://www.cs.sfu.ca/~han

  15. Han J., Koperski K., and Stefanovic N.: GeoMiner: A System Prototype for Spatial Data Mining, Proc. 1997 ACM-SIGMOD Int’l Conf. on Management of Data (SIGMOD’97), Tucson, Arizona, May 1997 (System prototype demonstration).

    Google Scholar 

  16. Holt, D., Steel D.G., Tramer M.: Area Homogeneity and the Modifiable Areal Unit Problem, Geographical Systems (3), pp. 181–200 (1996)

    Google Scholar 

  17. Keim, D.A., Kriegel, H.P.: Visualization Techniques for Mining Large Databases: A Comparison, IEEE Transactions on Knowledge and Data Engineering, vol 8, n°6 (1996)

    Google Scholar 

  18. Khoshafian, S.N, and Copeland, G.P: Object Identity. In Proc. of the ACM Conf. on Object-Oriented Programing Systems and Languages (OOPSLA), pages 408–416. (1986)

    Google Scholar 

  19. Kraak, M.J. and MacEachren, A.M.: Visualisation for exploration of spatial data. International Journal of Geographical Information Sciences 13 (4), pp. 285–287 (1999)

    Article  Google Scholar 

  20. Kraak, M.J.: Visualizing spatial distributions. Chapter 11 in Longley, P., M. Goodchild, D. Maguire & D. Rhind (editors) Geographical information systems: principles, techniques, management and applications. New York: J. Wiley & Sons (1999) pp.157–173.

    Google Scholar 

  21. Laurini R., Thompson D.: Fundamentals of Spatial Information Systems, Academic Press, London, UK, 680 p, 3rd printing (1994)

    Google Scholar 

  22. Laurini, R.: Information Systems for Urban Planning: A Hypermedia Cooperative Approach, Taylor and Francis (2000)

    Google Scholar 

  23. Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W.: Geographic Information Systems, Volume 1, Wiley, 1999

    Google Scholar 

  24. Lu, W. and Han, J: Distance-Associated Join Indices for Spatial Range Search. Eighth International Conference on Data Engineering, (1992) Tempe, Arizona, pp. 284–292

    Google Scholar 

  25. Maier, D., The Theory of Relational Databases, Computer Science Press, 1983.

    Google Scholar 

  26. Matheron, G.: Principles of geostatistics. Economic Geology, 58, pp. 1246–1266, (1963)

    Article  Google Scholar 

  27. O’Neil, P. and Graefe, G: Multi-tables joins through bitmapped join indices. SIGMOD Record, 24(3), pp. 8–11 (1995)

    Article  Google Scholar 

  28. Openshaw, S., Charlton, M., Wyme,r C. and Craft, A: A mark 1 geographical analysismachine for the automated analysis of point data sets, International Journal of Geographical Information Systems, Vol. 1 (4), pp. 335–358 (1987). See also URL: http://www/ccg.leeds.ac.uk/smart/gam/gam.html

    Article  Google Scholar 

  29. Roddick, J.F, Spiliopoulou, M.: A Bibliography of Temporal, Spatial and Spatio-Temporal Data Mining Research, ACM SIGKDD Explorations, volume 1, Issue 1 (1999)

    Google Scholar 

  30. Rotem D: Spatial join indices, Proc. of 7th Conf. on Data Engineering, Kobe, Japan (1991) pp. 500–509

    Google Scholar 

  31. Tobler W. R.: Cellular geography, In Gale S. Olsson G. (eds.) Philosophy in Geography, Dortrecht, Reidel (1979) 379–386

    Google Scholar 

  32. Valduriez P., “Join indices”, ACM Trans. on Database Systems, 12(2); 218–246, June 1987.

    Article  Google Scholar 

  33. Wang, W., Yang, J. and Muntz, R.: STING+: An approach to active spatial data mining, Proceedings of the Fifteenth International Conference on Data Engineering, Sydney, Australia. (1999) IEEE Computer Society. 116–12

    Google Scholar 

  34. Yeh, T-S: Spot: Distance based join indices for spatial data, ACM GIS 99, Kansas City, USA, pp 103–110 (1999)

    Google Scholar 

  35. Zeitouni K.: A Survey on Spatial Data Mining Methods Databases and Statistics Point of Views, Information Resources Management Association International Conference (IRMA.2000), Data Warehousing and Mining Track, Anchorage, Alaska, USA (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeitouni, K., Yeh, L., Aufaure, MA. (2001). Join Indices as a Tool for Spatial Data Mining. In: Roddick, J.F., Hornsby, K. (eds) Temporal, Spatial, and Spatio-Temporal Data Mining. TSDM 2000. Lecture Notes in Computer Science(), vol 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45244-3_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45244-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41773-6

  • Online ISBN: 978-3-540-45244-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics