Skip to main content

Higher Order Delaunay Triangulations

  • Conference paper
  • First Online:
Algorithms - ESA 2000 (ESA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1879))

Included in the following conference series:

  • 985 Accesses

Abstract

For a set P of points in the plane, we introduce a class of triangulations that is an extension of the Delaunay triangulation. Instead of requiring that for each triangle the circle through its vertices contains no points of P inside, we require that at most k points are inside the circle. Since there are many different higher order Delaunay triangulations for a point set, other useful criteria for triangulations can be incorporated without sacrificing the well-shapedness too much. Applications include realistic terrain modelling, and mesh generation.

This research is partially supported by the ESPRIT IV LTR Project No. 21957 (CGAL)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Agarwal, M deBerg, J. Matoušek, and O. Schwarzkopf. Constructing levels in arrangements and higher order Voronoi diagrams. SIAM J. Comput., 27:654–667, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Aggarwal, M. Hansen, and T. Leighton. Solving query-retrieval problems by compacting Voronoi diagrams. In Proc. 22nd Annu. ACM Symp. Theory Comput., pages 331–340, 1990.

    Google Scholar 

  3. M. Bern. Triangulations. In Jacob E. Goodman and Joseph O’ Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 22, pages 413–428. CRC Press LLC, Boca Raton, FL, 1997.

    Google Scholar 

  4. M. Bern, D. Dobkin, and D. Eppstein. Triangulating polygons without large angles. Internat. J. Comput. Geom. Appl., 5:171–192, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In D.-Z. Du and F. K. Hwang, editors, Computing in Euclidean Geometry, volume 4 of Lecture Notes Series on Computing, pages 47–123. World Scientific, Singapore, 2nd edition, 1995.

    Google Scholar 

  6. L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4:97–108, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. de Berg, M. vanKreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  8. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. Theory Appl., 4:235–282, 1994.

    MATH  Google Scholar 

  9. B. Falcidieno and C. Pienovi. Natural surface approximation by constrained stochastic interpolation. Comput. Aided Design, 22(3):167–172, 1990.

    Article  Google Scholar 

  10. M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F. T. Leighton, A. Simvonis, E. Welzl, and G. Woeginger. Drawing graphs in the plane with high resolution. SIAM J. Comput., 22:1035–1052, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Fortune. Voronoi diagrams and Delaunay triangulations. In Jacob E. Goodman and Joseph O’ Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 20, pages 377–388. CRC Press LLC, Boca Raton, FL, 1997.

    Google Scholar 

  12. A. Garg and R. Tamassia. Planar drawings and angular resolution: Algorithms and bounds. In Proc. 2nd Annu. European Symp. Algorithms, volume 855 of LNCS, pages 12–23. Springer-Verlag, 1994.

    Google Scholar 

  13. M.F. Hutchinson. Calculation of hydrologically sound digital elevation models. In Proc. 3th Int. Symp. on Spatial Data Handling, pages 117–133, 1988.

    Google Scholar 

  14. K. Jansen. One strike against the min-max degree triangulation problem. Comput. Geom. Theory Appl., 3:107–120, 1993.

    MATH  MathSciNet  Google Scholar 

  15. G. Kant and H. L. Bodlaender. Triangulating planar graphs while minimizing the maximum degree. Information and Computation, 135:1–14, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. T. Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput, C-31:478–487, 1982.

    Article  Google Scholar 

  17. J.J. Little and P. Shi. Structural lines, TINs, and DEMs. In T.K. Poiker and N. Chrisman, editors, Proc. 8th Int. Symp. on Spatial Data Handling, pages 627–636, 1998.

    Google Scholar 

  18. D.R. Maidment. GIS and hydrologic modeling. In M.F. Goodchild, B.O. Parks, and L.T. Steyaert, editors, Environmental modeling with GIS, pages 147–167. Oxford University Press, New York, 1993.

    Google Scholar 

  19. D.M. Mark. Automated detection of drainage networks from digital elevation models. Cartographica, 21:168–178, 1984.

    Google Scholar 

  20. A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester, UK, 1992.

    MATH  Google Scholar 

  21. B. Schneider. Geomorphologically sound reconstruction of digital terrain surfaces from contours. In T.K. Poiker and N. Chrisman, editors, Proc. 8th Int. Symp. on Spatial Data Handling, pages 657–667, 1998.

    Google Scholar 

  22. D.M. Theobald and M.F. Goodchild. Artifacts of TIN-based surface flow modelling. In Proc. GIS/LIS, pages 955–964, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gudmundsson, J., Hammar, M., van Kreveld, M. (2000). Higher Order Delaunay Triangulations. In: Paterson, M.S. (eds) Algorithms - ESA 2000. ESA 2000. Lecture Notes in Computer Science, vol 1879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45253-2_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-45253-2_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41004-1

  • Online ISBN: 978-3-540-45253-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics