Skip to main content

Polygon Decomposition for Efficient Construction of Minkowski Sums

  • Conference paper
  • First Online:
Algorithms - ESA 2000 (ESA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1879))

Included in the following conference series:

Abstract

Several algorithms for computing the Minkowski sum of two polygons in the plane begin by decomposing each polygon into convex subpolygons. We examine different methods for decomposing polygons by their suitability for efficient construction of Minkowski sums. We study and experiment with various well-known decompositions as well as with several new decomposition schemes. We report on our experiments with the various decompositions and different input polygons. Among our findings are that in general: (i) triangulations are too costly (ii) what constitutes a good decomposition for one of the input polygons depends on the other input polygon—consequently, we develop a procedure for simultaneously decomposing the two polygons such that a “mixed” objective function is minimized, (iii) there are optimal decomposition algorithms that significantly expedite the Minkowski-sum computation, but the decomposition itself is expensive to compute — in such cases simple heuristics that approximate the optimal decomposition perform very well.

P.A. is supported by Army Research Office MURI grant DAAH04-96-1-0013, by a Sloan fellowship, by NSF grants EIA-9870724, EIA-997287, and CCR-9732787 and by a grant from the U.S.-Israeli Binational Science Foundation. D.H. and E.F. have been supported in part by ESPRIT IV LTR Projects No. 21957 (CGAL) and No. 28155 (GALIA), and by a Franco-Israeli research grant (monitored by AFIRST/France and The Israeli Ministry of Science). D.H. has also been supported by a grant from the U.S.-Israeli Binational Science Foundation, by The Israel Science Foundation founded by the Israel Academy of Sciences and Humanities (Center for Geometric Computing and its Applications), and by the Hermann Minkowski - Minerva Center for Geometry at Tel Aviv University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The CGAL User Manual, Version 2.0, 1999. http://www.cs.ruu.nl/CGAL.

  2. P. K. Agarwal and M. Sharir. Arrangements. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 49–119. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1999.

    Google Scholar 

  3. M. Bern. Triangulations. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 22, pages 413–428. CRC Press LLC, Boca Raton, FL, 1997.

    Google Scholar 

  4. B. Chazelle and D. P. Dobkin. Optimal convex decompositions. In G. T. Toussaint, editor, Computational Geometry, pages 63–133. North-Holland, Amsterdam, Netherlands, 1985.

    Google Scholar 

  5. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  6. G. Elber and M.-S. Kim, editors. Special Issue of Computer Aided Design: Offsets, Sweeps and Minkowski Sums, volume 31. 1999.

    Google Scholar 

  7. A. Fabri, G. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design of CGAL, the Computational Geometry Algorithms Library. Technical Report MPI-I-98-1-007, MPI Inform., 1998. To appear in Software—Practice and Experience

    Google Scholar 

  8. E. Flato. Robust and efficient construction of planar Minkowski sums. Master’s thesis, Dept. Comput. Sci., Tel-Aviv Univ., 2000. Forthcoming. http://www.math.tau.ac.il/ flato/thesis.ps.gz.

  9. E. Flato, D. Halperin, I. Hanniel, and O. Nechushtan. The design and implementation of planar maps in CGAL. In J. Vitter and C. Zaroliagis, editors, Proceedings of the 3rd Workshop on Algorithm Engineering, volume 1148 of Lecture Notes Comput. Sci., pages 154–168. Springer-Verlag, 1999. Full version: http://www.math.tau.ac.il/ flato/WaeHtml/index.htm.

  10. D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 21, pages 389–412. CRC Press LLC, Boca Raton, FL, 1997.

    Google Scholar 

  11. D. Halperin, J.-C. Latombe, and R. H. Wilson. A general framework for assembly planning: The motion space approach. Algorithmica, 26:577–601, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Har-Peled, T. M. Chan, B. Aronov, D. Halperin, and J. Snoeyink. The complexity of a single face of a Minkowski sum. In Proc. 7th Canad. Conf. Comput. Geom., pages 91–96, 1995.

    Google Scholar 

  13. G. Kant and H. L. Bodlaender. Triangulating planar graphs while minimizing the maximum degree. In Proc. 3rd Scand. Workshop Algorithm Theory, volume 621 of Lecture Notes Comput. Sci., pages 258–271. Springer-Verlag, 1992.

    Google Scholar 

  14. A. Kaul, M. A. O’Connor, and V. Srinivasan. Computing Minkowski sums of regular polygons. In Proc. 3rd Canad. Conf. Comput. Geom., pages 74–77, Aug. 1991.

    Google Scholar 

  15. K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete Comput. Geom., 1:59–71, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. M. Keil. Decomposing a polygon into simpler components. SIAM J. Comput., 14:799–817, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. M. Keil and J. Snoeyink. On the time bound for convex decomposition of simple polygons. In Proc. 10th Canad. Conf. Comput. Geom., 1998.

    Google Scholar 

  18. M. Keil. Polygon decomposition. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1999.

    Google Scholar 

  19. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, 1991.

    Google Scholar 

  20. D. Leven and M. Sharir. Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams. Discrete Comput. Geom., 2:9–31, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  21. K. Melhorn and S. Näher. The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press, 1999.

    Google Scholar 

  22. K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice Hall, Englewood Cliffs, NJ, 1994.

    Google Scholar 

  23. R. Pollack, M. Sharir, and S. Sifrony. Separating two simple polygons by a sequence of translations. Discrete Comput. Geom., 3:123–136, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  24. L. Santaló. Integral Probability and Geometric Probability, volume 1 of Encyclopedia of Mathematics and its Applications. Addison-Wesley, 1979.

    Google Scholar 

  25. M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications Cambridge University Press, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agarwal, P.K., Flato, E., Halperin, D. (2000). Polygon Decomposition for Efficient Construction of Minkowski Sums. In: Paterson, M.S. (eds) Algorithms - ESA 2000. ESA 2000. Lecture Notes in Computer Science, vol 1879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45253-2_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45253-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41004-1

  • Online ISBN: 978-3-540-45253-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics