Abstract
This paper is concerned with the pure displacement problem of planar linear elasticity. Our interest is focussed to a locking-free FEM approximation of the problem in the case when the material is almost incompressible. The approximation space is constructed using the Crouzeix-Raviart linear finite elements. Choosing a proper hierarchical basis of this space we define an optimal order algebraic multilevel (AMLI) preconditioner for the related stiffness matrix. Local spectral analysis is applied to find the scaling parameter of the preconditioner as well as to estimate the related constants in the strengthened C.B.S. inequality. A set of numerical tests which illustrate the accuracy of the FEM solution, and the convergence rate of the AMLI PCG method is presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnold, D. N.: Discretization by finite elements of a parameter dependent problem. Numer. Math. 37 (1981) 404–421
Axelsson, O.: Iterative Solution Methods. Cambridge, University press (1996)
Axelsson O., Padiy, A.: On a Robust and Scalable Linear Elasticity Solver Based on a Saddle Point Formulation. Int. J. Numer. Meth. Enging. 44 (1999) 801-818
Axelsson O., Vassilevski, P. S.: Algebraic Multilevel Preconditioning Methods, Part II. SIAM J. Numer. Anal. 27 (1990) 1569–1590
Babuŝka, I., Suri, M.: Locking Effects in the Finite Approximation of Elasticity Problems. Numer. Math. 62 (1992) 439–463
Brenner, S.: A Non-Conforming Mixed Multigrid Method for the Pure Displacement Problem in Planar Linear Elasticity. SIAMJ. Numer. Anal. 30 (1993) 116–135
Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, Vol. 15, Springer-Verlag (1994)
Brenner S., Sung, S.: Linear Finite Element Methods for Planar Linear Elasticity. Math. Comp. 59 (1992) 321–338
Falk, R. S.: Non-conforming Finite Element Methods for the Equations of Linear Elasticity. Mathematics of Computation 57 (1991) 529–550
Kolev, Tz., Margenov, S.: Multilevel HB Preconditioning of Non-Conforming FEM Systems. In: Iliev, O., Kaschiev, M., Margenov, S., Sendov, Bl., Vassilevski, P. S. (eds.): Recent Advances in Numerical Methods and Applications II, World Scientific (1999) 603–610
Kolev, Tz., Margenov, S.: Two-Level Preconditioning of Pure Displacement Non Conforming FEM Systems. Numer. Linear Algebra Appl. 6 (1999) 533–555
Schöberl, J.: Robust Multigrid Preconditioner for Parameter-Dependent Problems I: The Stokes-Type Case. Technical Report No 97-2, Johannes Kepler University, Linz, Austria (1997)
Vassilevski, P. S.: On Two Ways of Stabilizing the Hierarchical Basis Multilevel Methods. SIAM Review 39 (1997) 18–53
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kolev, T., Margenov, S. (2001). AMLI Preconditioning of Pure Displacement Non-conforming Elasticity FEM Systems. In: Vulkov, L., Yalamov, P., Waśniewski, J. (eds) Numerical Analysis and Its Applications. NAA 2000. Lecture Notes in Computer Science, vol 1988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45262-1_56
Download citation
DOI: https://doi.org/10.1007/3-540-45262-1_56
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41814-6
Online ISBN: 978-3-540-45262-1
eBook Packages: Springer Book Archive