Abstract
This paper deals with one dimensional waves in medium with memory. Following [1] we shall denote by x a co-ordinate of a point belonging to a solid body,b y tthe time variable, by ε the deformation, by σ the tension and b
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alinhac, S.: Blow up for nonlinear hyperbolic equations, Birkhauser, Progress in Nonlinear Diff. Eq. and their Appl., 17(1995)
Chua L. O., Yang L.: Cellular neural networks: Theory, IEEE Trans. Circuit Syst., 35 Oct. (1988) 1257–1271
Chua L. O., Yang L.: Cellular neural networks: Applications, IEEE Trans. Circuit Syst., 35 Oct. (1988) 1272–1290
Lokshin, A., Sagomonian, S.: Nonlinear waves in the mechanics of solid bodies, Edition of the Moscow State University, Moscow, 1989(in Russian)
Ta-tsien, Li: Global classical solutions for quasilinear hyperbolic systems, Research in Appl. Math., John Wiley & Sons, Masson, 1994
Roska, T., Chua, L., Wolf, D., Kozek, T., Tetzla., R., Puffer, F.: Simulating nonlinear waves and PDEs via CNN-Part I: Basic Techniques, Part II: Typical Examples, IEEE Trans. Circuit and Syst.-I, 42 N 10 (1995) 809–820
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Popivanov, P., Slavova, A. (2001). Cellular Neural Network Model for Nonlinear Waves in Medium with Exponential Memory. In: Vulkov, L., Yalamov, P., Waśniewski, J. (eds) Numerical Analysis and Its Applications. NAA 2000. Lecture Notes in Computer Science, vol 1988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45262-1_81
Download citation
DOI: https://doi.org/10.1007/3-540-45262-1_81
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41814-6
Online ISBN: 978-3-540-45262-1
eBook Packages: Springer Book Archive