Skip to main content

A Godunov-Ryabenkii Instability for a Quickest Scheme

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1988))

Abstract

We consider a finite difference scheme, called Quickest, introduced by Leonard in 1979, for the convection-diffusion equation. Quickest uses an explicit, Leith-type differencing and third-order upwinding on the convective derivatives yielding a four-point scheme. For that reason the method requires careful treatment on the inflow boundary considering the fact that we need to introduce numerical boundary conditions and that they could lead us to instability phenomena. The stability region is found with the help of one of the most powerful methods for local analysis of the influence of boundary conditions - the Godunov-Ryabenkii theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baum, H. R., Ciment, M., Davis, R. W. and Moore, E. F.: (1981), Numerical solutions for a moving shear layer in a swirling axisymmetric flow. Proc. 7th Int. Conf. on Numerical Methods in Fluid Dyn. (ed. W. C. Reynolds & R. W. MacCormack). Lect. Notes in Physics 141 (1981) 74–79.

    Google Scholar 

  2. Davis, R. W. and Moore, E. F.: A numerical study of vortex shedding from rectangles. Journal of Fluid Mechanics 116 (1982) 475–506.

    Article  MATH  Google Scholar 

  3. Godunov, S. K., Ryabenkii: Spectral criteria for the stability of boundary problems for non-self-adjoint difference equations. Uspekhi Mat. Nauk., 18, 3( 1963) (In Russian).

    Google Scholar 

  4. Gustafsson, B., Kreiss, H.-O. and Sundstrom, A.: Stability theory of difference approximations for mixed initial boundary value problems, II. Mathematics of Computation 26 (1972) 649–686.

    MATH  MathSciNet  Google Scholar 

  5. Gustafsson, B., Kreiss, H.-O. and Oliger, J.: Time-dependent problems and difference methods, Wiley-Interscience (1995)

    Google Scholar 

  6. Johnson, R.W. and MacKinnon, R. J.: Equivalent versions of the Quick scheme for finite-difference and finite-volume numerical methods. Communications in applied numerical methods 8 (1992) 841–847.

    Article  MATH  MathSciNet  Google Scholar 

  7. Kreiss, H.-O.: Stability theory for difference approximations of mixed initial boundary value problems I. Mathematics of Computation 22 (1968) 703–714.

    MATH  MathSciNet  Google Scholar 

  8. Leonard, B. P.: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer methods in applied mechanics and engineering 19 (1979) 59–98.

    Article  MATH  Google Scholar 

  9. Leonard, B. P. and Mokhtari, S.: Beyond first-order upwinding the ultra-sharp alternative for non-oscillatory steady-state simulation of convection. International Journal for Numerical Methods in Engineering 30 (1990) 729–766.

    Article  Google Scholar 

  10. Morton, K. W. and Sobey, I. J.: Discretisation of a convection-diffusion equation. IMA Journal of Numerical Analysis 13 (1993) 141–160.

    Article  MATH  MathSciNet  Google Scholar 

  11. Osher, S.: Stability of difference approximations of dissipative type for mixed initial-boundary value problems. Mathematics of computation 23 (1969) 335–340.

    Google Scholar 

  12. Richtmyer, R. D. and Morton, K.W.: Difference methods for initial-value problems,2nd edn, Wiley-Interscience, New York (1967)

    MATH  Google Scholar 

  13. Sod, G. A.: Numerical methods in fluid dynamics: initial and initial boundary-value problems, Cambridge University Press, Cambridge (1988)

    Google Scholar 

  14. Strikwerda, J.: Finite difference schemes and partial differential equations,Wadsworth & Brooks, California, (1989)

    Google Scholar 

  15. Trefethen, L. N.: Group velocity interpretation of the stability theory of Gustafsson, Kreiss and Sundstrom. Journal of Computational Physics 49 (1983) 199–217.

    Article  MATH  MathSciNet  Google Scholar 

  16. Trefethen, L. N.: Instability of difference models for hyperbolic initial boundary value problems. Comm. Pure and applied Mathematics 37 (1984) 329–367.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sousa, E. (2001). A Godunov-Ryabenkii Instability for a Quickest Scheme. In: Vulkov, L., Yalamov, P., Waśniewski, J. (eds) Numerical Analysis and Its Applications. NAA 2000. Lecture Notes in Computer Science, vol 1988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45262-1_86

Download citation

  • DOI: https://doi.org/10.1007/3-540-45262-1_86

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41814-6

  • Online ISBN: 978-3-540-45262-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics