Abstract
For any class C und closed under NC1 reductions, it is shown that all sets complete for C under first-order (equivalently, Dlogtimeuniform AC0) reductions are isomorphic under first-order computable isomorphisms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
M. Agrawal, E. Allender, R. Impagliazzio, T. Pitassi, and S. Rudich. Reducing the complexity of reductions. In Proceedings of Annual ACM Symposium on the Theory of Computing, pages 730–738, 1997.
M. Agrawal, E. Allender, and S. Rudich. Reductions in circuit complexity: An isomorphism theorem and a gap theorem. J. Comput. Sys. Sci., 57:127–143, 1998.
E. Allender, J. Balcázar, and N. Immerman. A first-order isomorphism theorem. In Proceedings of the Symposium on Theoretical Aspects of Computer Science, 1993.
E. Allender and V. Gore. Rudimentary reductions revisited. Information Processing Letters, 40:89–95, 1991.
N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost k-wise independent random variables. In Proceedings of Annual IEEE Symposium on Foundations of Computer Science, pages 544–553, 1990.
M. Agrawal. On the isomorphism problem for weak reducibilities. J. Comput. Sys. Sci., 53(2):267–282, 1996.
M. Agrawal. Towards uniform AC0 isomorphisms. In Proceedings of the Conference on Computational Complexity, 2001. to be presented.
J. Balcázar, J. DÃaz, and J. Gabarró. Structural Complexity I. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1988.
L. Berman and J. Hartmanis. On isomorphism and density of NP and other complete sets. SIAM Journal on Computing, 1:305–322, 1977.
D. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. J. Comput. Sys. Sci., 74:274–306, 1990.
A. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. SIAM Journal on Computing, 13:423–439, 1984.
P. Erdös and R. Rado. Intersection theorems for systems of sets. J. London Math. Soc., 35:85–90, 1960.
S. Fenner, L. Fortnow, and S. Kurtz. The isomorphism conjecture holds relative to an oracle. In Proceedings of Annual IEEE Symposium on Foundations of Computer Science, pages 30–39, 1992. To appear in SIAM J. Comput.
M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial hierarchy. Mathematical Systems Theory, 17:13–27, 1984.
N. Immerman and S. Landau. The complexity of iterated multiplication. Information and Computation, 116:103–116, 1995.
N. Immerman. Languages that capture complexity classes. SIAM Journal on Computing, 16:760–778, 1987.
N. Jones. Space-bounded reducibility among combinatorial problems. J. Comput. Sys. Sci., 11:68–85, 1975.
S. Kurtz, S. Mahaney, and J. Royer. The structure of complete degrees. In A. Selman, editor, Complexity Theory Retrospective, pages 108–146. Springer-Verlag, 1988.
S. Kurtz, S. Mahaney, and J. Royer. The isomorphism conjecture fails relative to a random oracle. In Proceedings of Annual ACM Symposium on the Theory of Computing, pages 157–166, 1989.
S. Lindell. A purely logical characterization of circuit complexity. In Proceedings of the Structure in Complexity Theory Conference, pages 185–192, 1992.
J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications. In Proceedings of Annual ACM Symposium on the Theory of Computing, pages 213–223, 1990.
N. Nisan and A. Wigderson. Hardness vs. randomness. J. Comput. Sys. Sci., 49(2):149–167, 1994.
M. Sipser. Borel sets and circuit complexity. In Proceedings of Annual ACM Symposium on the Theory of Computing, pages 61–69, 1983.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Agrawal, M. (2001). The First-Order Isomorphism Theorem. In: Hariharan, R., Vinay, V., Mukund, M. (eds) FST TCS 2001: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2001. Lecture Notes in Computer Science, vol 2245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45294-X_7
Download citation
DOI: https://doi.org/10.1007/3-540-45294-X_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43002-5
Online ISBN: 978-3-540-45294-2
eBook Packages: Springer Book Archive