Skip to main content

The First-Order Isomorphism Theorem

  • Conference paper
  • First Online:
FST TCS 2001: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2245))

  • 491 Accesses

Abstract

For any class C und closed under NC1 reductions, it is shown that all sets complete for C under first-order (equivalently, Dlogtimeuniform AC0) reductions are isomorphic under first-order computable isomorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Agrawal, E. Allender, R. Impagliazzio, T. Pitassi, and S. Rudich. Reducing the complexity of reductions. In Proceedings of Annual ACM Symposium on the Theory of Computing, pages 730–738, 1997.

    Google Scholar 

  2. M. Agrawal, E. Allender, and S. Rudich. Reductions in circuit complexity: An isomorphism theorem and a gap theorem. J. Comput. Sys. Sci., 57:127–143, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Allender, J. Balcázar, and N. Immerman. A first-order isomorphism theorem. In Proceedings of the Symposium on Theoretical Aspects of Computer Science, 1993.

    Google Scholar 

  4. E. Allender and V. Gore. Rudimentary reductions revisited. Information Processing Letters, 40:89–95, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  5. N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost k-wise independent random variables. In Proceedings of Annual IEEE Symposium on Foundations of Computer Science, pages 544–553, 1990.

    Google Scholar 

  6. M. Agrawal. On the isomorphism problem for weak reducibilities. J. Comput. Sys. Sci., 53(2):267–282, 1996.

    Article  MATH  Google Scholar 

  7. M. Agrawal. Towards uniform AC0 isomorphisms. In Proceedings of the Conference on Computational Complexity, 2001. to be presented.

    Google Scholar 

  8. J. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1988.

    Google Scholar 

  9. L. Berman and J. Hartmanis. On isomorphism and density of NP and other complete sets. SIAM Journal on Computing, 1:305–322, 1977.

    Article  MathSciNet  Google Scholar 

  10. D. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. J. Comput. Sys. Sci., 74:274–306, 1990.

    Article  MathSciNet  Google Scholar 

  11. A. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. SIAM Journal on Computing, 13:423–439, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Erdös and R. Rado. Intersection theorems for systems of sets. J. London Math. Soc., 35:85–90, 1960.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Fenner, L. Fortnow, and S. Kurtz. The isomorphism conjecture holds relative to an oracle. In Proceedings of Annual IEEE Symposium on Foundations of Computer Science, pages 30–39, 1992. To appear in SIAM J. Comput.

    Google Scholar 

  14. M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial hierarchy. Mathematical Systems Theory, 17:13–27, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  15. N. Immerman and S. Landau. The complexity of iterated multiplication. Information and Computation, 116:103–116, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  16. N. Immerman. Languages that capture complexity classes. SIAM Journal on Computing, 16:760–778, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  17. N. Jones. Space-bounded reducibility among combinatorial problems. J. Comput. Sys. Sci., 11:68–85, 1975.

    Article  MATH  Google Scholar 

  18. S. Kurtz, S. Mahaney, and J. Royer. The structure of complete degrees. In A. Selman, editor, Complexity Theory Retrospective, pages 108–146. Springer-Verlag, 1988.

    Google Scholar 

  19. S. Kurtz, S. Mahaney, and J. Royer. The isomorphism conjecture fails relative to a random oracle. In Proceedings of Annual ACM Symposium on the Theory of Computing, pages 157–166, 1989.

    Google Scholar 

  20. S. Lindell. A purely logical characterization of circuit complexity. In Proceedings of the Structure in Complexity Theory Conference, pages 185–192, 1992.

    Google Scholar 

  21. J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications. In Proceedings of Annual ACM Symposium on the Theory of Computing, pages 213–223, 1990.

    Google Scholar 

  22. N. Nisan and A. Wigderson. Hardness vs. randomness. J. Comput. Sys. Sci., 49(2):149–167, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Sipser. Borel sets and circuit complexity. In Proceedings of Annual ACM Symposium on the Theory of Computing, pages 61–69, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agrawal, M. (2001). The First-Order Isomorphism Theorem. In: Hariharan, R., Vinay, V., Mukund, M. (eds) FST TCS 2001: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2001. Lecture Notes in Computer Science, vol 2245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45294-X_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45294-X_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43002-5

  • Online ISBN: 978-3-540-45294-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics