
What Are Polymorphically-Typed Ambients?

Torben Amtoft?, Assaf J. Kfoury??, and Santiago M. Pericas-Geertsen? ? ?

Boston University
{tamtoft,kfoury,santiago}@cs.bu.edu

Abstract. The Ambient Calculus was developed by Cardelli and Gor-
don as a formal framework to study issues of mobility and migrant
code [6]. We consider an Ambient Calculus where ambients transport
and exchange programs rather that just inert data. We propose different
senses in which such a calculus can be said to be polymorphically typed,
and design accordingly a polymorphic type system for it. Our type system
assigns types to embedded programs and what we call behaviors to pro-
cesses; a denotational semantics of behaviors is then proposed, here called
trace semantics, underlying much of the remaining analysis. We state and
prove a Subject Reduction property for our polymorphically-typed cal-
culus. Based on techniques borrowed from finite automata theory, type-
checking of fully type-annotated processes is shown to be decidable. Our
polymorphically-typed calculus is a conservative extension of the typed
Ambient Calculus originally proposed by Cardelli and Gordon [7].

1 Introduction

1.1 Background and Motivation

With the advent of the Internet a few years ago, considerable effort has gone
into the study of mobile computation and programming languages that support
it. On the theoretical side of this research, several concurrent and distributed
calculi have been proposed, such as the Distributed Join Calculus [8], the Dπ
Calculus [16], the Box-Pi Calculus [17], the Seal Calculus [20], among others.
The Ambient Calculus (henceforth, AC) is a recent addition to this list and the
starting point of our investigation.

Our long-term interest is the design and implementation of a strongly-typed
programming language for mobile computation. Part of this effort is an examina-
tion of AC as a foundation for such a language. An important step in achieving
a greater degree of modularity and a more natural style of programming, with-
out sacrificing the benefits of strong typing, is to make ambients polymorphically
typed. This is the focus of the present paper.

Early type systems for AC (see [7,5] among others) restrict ambients to be
monomorphic: There can be only one “topic of conversation” (the type of ex-
changed data) in an ambient, initially and throughout its existence as a location
? http://www.cs.bu.edu/associates/tamtoft

?? http://www.cs.bu.edu/˜kfoury
? ? ? http://cs-people.bu.edu/santiago

D. Sands (Ed.): ESOP 2001, LNCS 2028, pp. 206–220, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

What Are Polymorphically-Typed Ambients? 207

of an enclosed process. Below, we identify 4 cases in which ambients can be
said to be polymorphically typed. Very recent type systems for AC and for an
object-oriented version of AC, in [23] and [3] respectively, include suitable forms
of subtyping, one of the 4 cases below. But none of the other 3 cases has been
yet integrated into a polymorphic type system for AC or for an extension of it.
We illustrate each of the 4 cases with a very brief example, written in a syntax
slightly more general than the original syntax of AC, as we allow processes to
exchange arbitrary functional expressions (possibly unevaluated for now) rather
than just inert data.

Case 1. Consider a process of the form:

p|[in r.〈even, 3〉]| || q|[in r.〈not, true〉]| || r|[(f, x). n|[〈f x〉 || P]| || open p || open q]|

Here, there are 3 ambients in parallel, named p, q and r, and one ambient named
n inside r. Both p and q can move into r (expressed by the capability “in r”)
and, once inside r, both can be dissolved (expressed by the capabilities “open p”
and “open q”) in order to unleash their outputs. The type of the input pair (f, x)
inside r can be (int → bool, int) or (bool → bool, bool), depending on whether
output 〈even, 3〉 or output 〈not, true〉 is transmitted first, and in either case the
type of the application (f x) is bool. We assume the unspecified process P can
be executed safely in parallel with the boolean output 〈f x〉. The polymorphism
of r is basically the familiar parametric polymorphism of ML.

Case 2. A slight variation of the preceding process is:

p|[in r.〈3, 2〉]| || q|[in r.〈3.6, 5.1〉]| || r|[(x, y). n|[〈mult(x, y)〉 || P]| || open p || open q]|

where the operation mult : (real, real) → real multiplies two real numbers. Be-
cause the type of 〈3, 2〉 is (int, int), which is a subtype of (real, real), it is safe to
transmit the output 〈3, 2〉 to the input variables (x, y). Both ambients p and q
can enter the ambient r safely. The polymorphism of r is the familiar subtype
polymorphism found in many other functional and object-oriented programming
languages, and also incorporated in type systems for concurrent calculi, such
as [14,15] for the π-calculus and [23] for AC.

Case 3. Consider now the following process:

n|[〈true, 5〉 || 〈5, 6, 3.6〉 || (x, y).P || (x, y, z).Q]|

The outputs are transmitted depending on their arities, here 2 for the output
〈true, 5〉 and 3 for the output 〈5, 6, 3.6〉. We assume that the unspecified pro-
cesses (x, y).P and (x, y, z).Q can be executed safely if they input, respectively,
(bool, int) pairs and (int, int, real) triples. There is no ambiguity as to which of
the two outputs should be transmitted to which of these two processes, i.e., the
arity is used as a “switch” to dispatch an output to its appropriate destination.
Hence, the execution of the entire process enclosed in the ambient n can proceed
safely, provided also that all other outputs of arity 2 and arity 3 in parallel with

208 T. Amtoft, A.J. Kfoury, and S.M. Pericas-Geertsen

〈true, 5〉 and 〈5, 6, 3.6〉 have types (bool, int) and (int, int, real), respectively. The
polymorphism of n is appropriately called arity polymorphism1.

Case 4. A more subtle sense in which the type of exchanged data can change
over time, as the computation proceeds inside an ambient, is illustrated by:

m|[〈7〉 || (x).open n.〈x = 42〉 || n|[(y).P]|]|
where the type of the equality test “x = 42” is bool. Initially, the topic of
conversation in the ambient m is int. After the output 〈7〉 is transmitted, the
ambient n is opened and the topic of conversation now becomes bool. Assuming
that the unspecified process (y).P can be executed safely whenever it inputs
a boolean value, the execution of the entire process enclosed in the ambient
m can proceed safely. What takes place in the ambient m is a case of what
we shall call orderly communication2, and which raises entirely new problems
not encountered before in the context of AC. The design of a type discipline
enforcing it is a delicate matter, and the main focus of this paper.

Orderly communication bears a strong resemblance to what has been called
“session types” in the π-calculus, originated with the work of Honda and his
collaborators [18,10] whose approach is based on syntax, and more recently de-
veloped by Gay and Hole [9] where the session discipline is enforced by a type
system for the π-calculus (also integrating subtyping and recursive types).

Of the four cases above, perhaps 3 and certainly 4 are arguably excluded from
what “polymorphism” has usually meant. Nevertheless, these two cases allow the
same ambient to hold different topics of conversation, either simultaneously (in
case 3) or consecutively at different times (in case 4) — or both simultaneously
and consecutively, as illustrated by more interesting examples. Hence, in a wider
sense of the word which we here propose, it is appropriate to include 3 and 4 as
cases of polymorphic ambients.

1.2 Scope and Contribution of Our Research

The core of our formal calculus is AC, augmented with a simply-typed func-
tional language at the level of exchanged data; accordingly we call our calculus
AC+. Although AC+ is the result of combining AC and a functional language,
the two are essentially kept separate in our framework, in the sense that commu-
nication between processes is limited to functional programs and cannot include
other processes. This is a deliberate decision: We steer clear of a higher-order
AC+, where processes can exchange other processes (in addition to programs),
something that will certainly reproduce many of the challenges already encoun-
tered in higher-order versions of the π-calculus (as in the work of Hennessy and
his collaborators [21,22] for example).
1 The term “arity polymorphism” was used already by others, e.g. Moggi [12], to

describe similar—though different in some respects—situations in functional pro-
gramming languages.

2 We thank Benjamin Pierce for suggesting the apt term “orderly communication”.

What Are Polymorphically-Typed Ambients? 209

In summary, our main accomplishments are (highlighted by bullet points):

– We design a type system for AC+ where embedded programs are assigned
types and processes are assigned what we call behaviors. Our type system
smoothly integrates 3 of the 4 cases of polymorphism into a single framework:
subtype polymorphism, arity polymorphism and orderly communication.

Our current type system does not include ML-style parametric polymorphism.
Taking the cue from Turner’s work [19], we expect its incorporation into our
type system to proceed without major obstacles.

– We develop a perspicuous denotational semantics of behaviors, which we call
their trace semantics. Behavior equivalence and behavior subsumption are
defined relative to this trace semantics, which is further used to prove that
our polymorphically-typed AC+ satisfies a Subject Reduction property.

– Behavior subsumption and type subsumption are shown to be decidable
relations, and this implies the decidability (at least exponential in the worse
case) of type-checking for type-annotated AC+ terms.

The proof of this result is of independent interest; it is a non-trivial adaptation of
techniques from finite automata theory where, by contrast, decision procedures
typically have low-degree polynomial time complexities. The more difficult prob-
lem of type-inference for (un-annotated) AC+ terms is left for future work.

– Our polymorphically typed AC+ is a conservative extension of the typed
version of AC originally proposed by Cardelli and Gordon [7], in the sense
that every process typable in the latter is typable in ours.

Further material and all missing proofs are included in the technical report [1],
on which the current paper is based (this report can be downloaded from the
Church Project web site at http://types.bu.edu/reports/).

1.3 Motivating Example

We now give an example, short but more interesting than the snippets in
Sect. 1.1, to illustrate the expressive power and convenience of a polymorphically
typed AC+, in particular the use of orderly communication. Aside from the em-
bedded programs, the syntax of ambients is identical to that first proposed by
Cardelli and Gordon [6] with the addition of a co-capability “coopen n” akin
to a proposal already made by Levi and Sangiorgi [11]. For a process to open
an ambient n, this ambient must contain a top-level process willing to exer-
cise a coopen n (cf. (Red Open) in Fig. 2). We shall use n{P} to abbreviate
n|[P || coopen n]|.
Example 1 (Packet Routing). A packet enters a router and requests to be routed
to a specific destination. A router reads the destination name (denoted by the
string “bu”) and then communicates a path (a sequence of in and out capabilities)
back to the packet. The packet uses this path to route itself to the destination.

210 T. Amtoft, A.J. Kfoury, and S.M. Pericas-Geertsen

Expressions

M ∈ Exp ::= n | c | λn : σ.M | M1M2 | ×(M1, . . . , Mk) | if M0 then M1 else M2

| ε | M1.M2 | in M | out M | open M | coopen M (k > 0)

Processes

P ∈ Proc ::= 0 | P1 || P2 | !P | (νn : σ).P | M.P | M |[P]| | (n1 : σ1, . . . , nk : σk).P

| 〈M〉 (k > 0)

When there is no ambiguity we write M for M.0.

Fig. 1. Syntax of AC+.

Orderly communication is needed since inside the packet there are two topics of
conversation: first strings (the destination), and next capabilities (the path).

router|[!route{in packet.(dst).open hop.〈lookup-route(dst)〉}]| ||
packet|[in router.open route.〈“bu”〉 || hop{(x).x}]|

Notice that the packet reads and exercises the path by means of its subterm (x).x.
Despite its simplicity, the term (x).x is not typable in the Cardelli-Gordon type
system for AC nor, to the best of our knowledge, in any of the type systems for
AC available in the literature. In these systems, the only way to type a process
that reads and exercises a capability is by using an extra ambient. Specifically,
the process (x).x must be written as (x).n|[x]| for some ambient name n. ut

2 Types and Behaviors

Figure 1 depicts the syntax of our language AC+. A process P ∈ Proc is basi-
cally as in [7]: there are constructs for parallel composition (P1 || P2), replication
(!P), restriction ((νn : σ).P); and there also are constructs for input and output.
Note that communication is asynchronous, in that an outputting process has no
“continuation”; a communication can thus (cf. the metaphor in [4]) be viewed
as the placement, and subsequent removal, of a Post-It note on a message board
that (unlike in [4]) has a section for each arity.

An expression M ∈ Exp denotes a computation over a domain that includes
not only simple values (like integers) but also functions, tuples, ambient names,
and (paths of) capabilities. Note that for all binding constructs in AC+, the
name n being bound is annotated with a type σ (to be defined in Sect. 2.2).

2.1 Operational Semantics

The semantics of AC+ is presented in Fig. 2. Before an expression M can be
passed as an argument to a function or communicated to another process it must
be evaluated to a value V , using the evaluation relation M1 −→ M2.

What Are Polymorphically-Typed Ambients? 211

We write P1 ≡ P2 to denote that P1 and P2 are equivalent, modulo con-
sistent renaming of bound names (which may be needed to apply (Red Beta)
and (Red Comm)) and modulo “syntactic rearrangement” (we have, e.g., that
P || 0 ≡ P and P || Q ≡ Q || P). The definition is as in [7], except that we omit
the rule !P ≡ P || !P (in the presence of which we do not know whether it will be
possible to establish Lemma 2) and instead allow this “unfolding” to take place
via the rule (Red Repl).

We write P1
`−→ P2 if P1 reduces in one step to P2 by performing “an ac-

tion described by `”. Here ` = comm(τ) if a value of type τ is communicated at
top-level (Red Comm), and ` = ε otherwise. We use a notion of “process evalua-
tion contexts” to succinctly describe the place in a process where an expression
(Red MctxtP) or subprocess (Red PctxtP) is reduced. Reducing inside an ambi-
ent is given a special treatment in (Red Amb), as the label “disappears” due to
the fact that communications are invisible outside ambients. Note that P

`−→ Q

does not imply that M.P
`−→ M.Q since M must evaluate to a capability which

then is executed before P can be activated; similarly for other constructs.

2.2 Types and Behaviors

The syntax of types (τ, σ ∈ Typ) and the syntax of behaviors (b ∈ Beh) are recur-
sively defined in Fig. 3. The first five behavior constructs capture the intuition
(cf. [2]) that we want to keep track of the relationship (sequential or parallel)
between occurrences of input and output operations.

An ambient n has a type of the form amb[b0, b1], where b0 and b1 can both
be viewed as upper estimates of the behavior of a process “unleashed” by open-
ing n. An example: for n|[〈7〉 || (x : int).coopen n.〈x = 42〉]| we expect n to have
the type amb[put(bool), put(bool)], reflecting that when n is opened the value 7
has already been communicated—something we would not know if we did not
have the explicit occurrence of coopen n, which we keep track of using the be-
havior diss. The behaviors b0 and b1 will often be equal, in which case we may
write amb[b0] for amb[b0, b0]; but as in [23] the possibility of them being distinct
facilitates a smooth integration of subtyping.

A capability has a type of the form cap[B] where B is a behavior context,
that is a “behavior with a hole inside”. To motivate this, consider a process
P = open n.P ′ where P ′ has behavior b′ and n has type amb[b]. When P is
executed, P ′ will run in parallel with a process of behavior b, so P should be
assigned the behavior b || b′, which can be written as (b || 2)bb′c. This is why
it makes sense to assign open n the capability type cap[b || 2], cf. the rules
(Exp Open) and (Proc Action) in Fig 4.

The first six behavior constructs in Fig. 3 alone, are sufficient to write a type
system satisfying a subject reduction property (Sect. 4), but they do not enable
the typing of processes performing (using replication) an unbounded number
of input and output operations, and neither do they enable the typing of a
conditional where one branch is a capability of type cap[put(int) || 2] whereas
the other branch is a capability of type cap[get(int) || 2]. Among many possible

212 T. Amtoft, A.J. Kfoury, and S.M. Pericas-Geertsen

Values V ::= · · · (omitted, as standard)

Evaluation Contexts for Expressions and Processes

E ::= 2e | EM | V E | ×(V1, .., Vi−1, E , Mi+1, .., Mk) | if E then M1 else M2

| E .M | V.E | in E | out E | open E | coopen E (k > 0)

P ::= 2p | E .P | E|[P]| | 〈E〉 | (νn : σ).P | P || P

EbMc is the expression resulting from replacing 2e with M in E.
PbMce is the process resulting from replacing 2e with M in P.
PbP cp is the process resulting from replacing 2p with P in P.

Reduction Rules

Let ` be a label in {ε} ∪ {comm(τ) | τ ∈ Typ}.
Let δ(c, V) be a partial function defined for every constant c.
In (Red Beta) and (Red Comm), we demand that there is no name capture.

(λn : σ.M)V −→ M [n := V] (Red Beta)
cV −→ V ′ where V ′ = δ(c, V) (Red Delta)
if true then M1 else M2 −→ M1 (Red IfTrue)
if false then M1 else M2 −→ M2 (Red IfFalse)
If M1 −→ M2 then EbM1c −→ EbM2c (Red MctxtM)
n|[in m.P || Q]| || m|[R]| ε−→ m|[n|[P || Q]| || R]| (Red In)
m|[n|[out m.P || Q]| || R]| ε−→ n|[P || Q]| || m|[R]| (Red Out)
open n.P || n|[coopen n.Q || R]| ε−→ P || Q || R (Red Open)

(n1 : σ1, . . . , nk : σk).P || 〈×(V1, . . . , Vk)〉 comm(τ)−−−−−→
P [ni := Vi] where τ = ×(σ1, . . . , σk) (Red Comm)

!P ε−→ P || !P (Red Repl)
If M1 −→ M2 then PbM1ce

ε−→ PbM2ce (Red MctxtP)
If P

`−→ Q then PbP cp
`−→ PbQcp (Red PctxtP)

If P
`−→ Q then n|[P]| ε−→ n|[Q]| (Red Amb)

If P ′ ≡ P, P
`−→ Q, Q ≡ Q′ then P ′ `−→ Q′ (Red ≡)

Thus only tuples are communicated, and where there is no ambiguity we may write
〈M1, . . . , Mk〉 for 〈×(M1, . . . , Mk)〉

Fig. 2. Operational semantics.

options for (approximating) constructs expressing recursion and choice, we in
this paper settle for a simple one: the construct fromnow T with T the “topics of
conversation”, which can be thought of as the “union” of all behaviors composed
of put(τ) and get(τ) with τ ∈ T .

We shall use the notion of level : a type τ has level i if i is an upper bound
of the depth of nested occurrences of amb[,] or cap[] within τ , similarly for T ,
b, and B. Example: τ0 = int → int has level zero, b1 = put(cap[put(τ0) || 2]) has
level one, and τ2 = amb[b1, b1] has level two (as well as any higher level).

What Are Polymorphically-Typed Ambients? 213

Types

σ, τ ∈ Typ ::= bool | int | real | string | · · · type constant

| σ → τ function type

| ×(σ1, . . . , σk) tuple with arity k > 0

| amb[b, b′] type of ambient name

| cap[B] type of capability

T ∈ Topics = {{τ1, . . . , τm} | m > 0 and arity(τi) 6= arity(τj) for i 6= j}
When there is no ambiguity, we write σ for ×(σ) and (σ1, . . . , σk) for ×(σ1, . . . , σk).

Behaviors

b ∈ Beh ::= ε no traceable action

| b1.b2 first b1 then b2

| b1 || b2 parallel composition

| put(σ) output of type σ (a tuple)

| get(σ) input of type σ (a tuple)

| diss ambient dissolution

| fromnow T unordered communication

of values with types in T

B ∈ BehCont::= 2 | b.B | B.b | b || B | B || b behavior context

Notation: Bbbc is the behavior resulting from replacing 2 with b in B; similarly for
the behavior context BbB1c.

Fig. 3. Syntax of types and behaviors.

2.3 Behavior Subsumption

We employ a relation b1 6 b2, to be formally defined in Sect. 3, with the intuitive
interpretation that b2 is more “permissive” than b1. For example, put(int) 6
fromnow {int, (int, int)}, and if integers can be converted into real numbers then
also put(int) 6 put(real), since a process that sends an integer thereby also sends
a real number, and get(real) 6 get(int), since a process that accepts a real number
also will accept an integer. Thus output is covariant and input is contravariant,
while in other systems found in the literature it is the other way round—the
reason for this discrepancy is that we take a descriptive rather than a prescriptive
point of view. From a prescriptive point of view, a channel that allows the writing
of real numbers also allows the writing of integers, and a channel that allows the
reading of integers also allows the reading of real numbers.

The relation on behaviors induces a relation on behavior contexts:

Definition 1. B1 6 B2 holds iff for all level 0 behaviors b: B1bbc 6 B2bbc.

214 T. Amtoft, A.J. Kfoury, and S.M. Pericas-Geertsen

2.4 Subtyping

We employ a relation τ1 6 τ2, such that a value of type τ1 also has type τ2. On
base types, we have int 6 real. On composite types, the relation is defined using
the following polarity rules (tuples with different arity are incompatible):

	 → ⊕ (⊕, . . . ,⊕) amb[,⊕] cap[⊕]

2.5 The Type System

Figure 4 defines judgements E ` M : τ and E ` P : b, where E is an environment
mapping names into types. The function type() assigns types to constants.

The side condition in (Proc Repl) prevents us from assigning !〈7〉 the incorrect
behavior put(int) (but instead we can use (Proc Subsumption) and assign it the
behavior fromnow {int}).

The side conditions for (Proc Amb) employ a couple of notions which will be
formally defined in Sect. 3; below we shall convey the intuition by providing a
few examples. First we address the notion of being safe.

– The behavior put(int) || get(bool) is not safe, since a process which expects a
boolean may receive an integer.

– Referring back to “Case 4” from Sect. 1.1 (now with the appropriate type an-
notations, n|[...]| replaced by n{...} and P replaced by 0) the process enclosed
within m has behavior

b = put(int) || get(int).(get(bool) || put(bool)) (1)

which is safe, since no matter how the parallel behaviors are interleaved
in a “well-formed” way then (i) put(bool) cannot precede get(int); and (ii)
put(int) cannot immediately precede get(bool).

– Perhaps surprisingly, the behavior diss.(put(int) || get(bool)) is considered
safe, since nothing bad happens as long as no one attempts to open the
enclosing ambient (a process doing that would not be safe).

Concerning the relation b b0, the idea is that b0 denotes “what remains” of b
after its first occurrence of diss. For example, with b = get(int).diss || put(int) we
have b ε (since we can infer that put(int) is performed before diss). And with
b = fromnow T || diss, we have b fromnow T .

Example 2. With b = get(string).(get(cap[2]).ε || put(cap[2])), we can construct
a typing for Example 1 as follows: assign the behavior get(cap[2]).ε || diss to
the body of hop (which can then be given the type amb[get(cap[2]).ε]), assign
the (safe) behavior b || diss to the body of route (which can then be given the
type amb[b]), and assign b || put(string) (which is clearly safe) to the body of
packet . ut

What Are Polymorphically-Typed Ambients? 215

Non-structural Rules

(Proc Subsumption) (Exp Subsumption)
E ` P : b

E ` P : b′ (b 6 b′)
E ` M : σ

E ` M : σ′ (σ 6 σ′)

Expressions (selected rules only)

(Exp App) (Exp Action)

E ` M1 : σ → τ E ` M2 : σ

E ` M1M2 : τ

E ` M1 : cap[B1] E ` M2 : cap[B2]
E ` M1.M2 : cap[B1bB2c]

(Exp ε) (Exp In) (Exp Out)

E ` ε : cap[2]
E ` M : amb[b, b′]
E ` in M : cap[2]

E ` M : amb[b, b′]
E ` out M : cap[2]

(Exp c) (Exp Open) (Exp Coopen)

type(c) = σ

E ` c : σ

E ` M : amb[b, b′]
E ` open M : cap[b′ || 2]

E ` M : amb[b, b′]
E ` coopen M : cap[diss.2]

Processes

(Proc Zero) (Proc Par) (Proc Repl)

E ` 0 : ε

E ` P1 : b1 E ` P2 : b2

E ` P1 || P2 : b1 || b2

E ` P : b

E ` !P : b
(if (b || b) 6 b)

(Proc Action) (Proc Res)

E ` M : cap[B] E ` P : b

E ` M.P : Bbbc
E, n : amb[b, b′] ` P : b1

E ` (νn : amb[b, b′]).P : b1

(Proc Amb)

E ` M : amb[b, b′] E ` P : b1

E ` M |[P]| : ε
(if b1 safe and b1 b and b 6 b′)

(Proc Input) (Proc Output)

E, n1 : τ1, · · · , nk : τk ` P : b

E ` (n1 : τ1, . . . , nk : τk).P : get(τ1, · · · , τk).b
E ` M : ×(τ1, . . . , τk)

E ` 〈M〉 : put(τ1, · · · , τk)

Fig. 4. Typing rules.

216 T. Amtoft, A.J. Kfoury, and S.M. Pericas-Geertsen

3 Trace Semantics of Behaviors

In this section we shall define several relations on behaviors, in particular, an
ordering relation. We have taken a semantic rather than an axiomatic approach,
motivated by the observation that choosing the “right” set of axioms is often
a somewhat ad-hoc exercise. An added advantage of the semantic approach is
that in our case it considerably facilitates type checking.

Definition 2 (Traces). A trace tr ∈ Trace is a finite sequence of actions, where
an action a ∈ Act is a behavior that is either put(τ), get(τ), or diss.

The semantics [[b]] of a behavior b belongs to the powerset P(Trace):

[[ε]] = {•} [[diss]] = {diss}
[[b1.b2]] = [[b1]] � [[b2]] [[b1 || b2]] = [[b1]] ‖ [[b2]]

[[put(τ)]] = {put(τ)} [[get(τ)]] = {get(τ)}
[[fromnow T]] = {tr | ∀a occurring in tr : ∃τ ∈ T : a ∈ {put(τ), get(τ)}}

Here • denotes the empty sequence, tr1 � tr2 denotes the concatenation of tr1
and tr2 which trivially lifts to sets of traces (Tr ranges over such), and Tr1 ‖ Tr2
denotes all traces that can be formed by arbitrarily interleaving a trace in Tr1
with a trace in Tr2.

Consider the run-time behavior of a process not interacting with other pro-
cesses. Each input must necessarily be preceded by an output with the same
arity, and an error occurs if the type of the value being output is not a subtype
of the type of the value being input. This motivates the following definition:

Definition 3 (Comm). A trace tr belongs to Comm if tr = put(τ) get(σ) with
arity(τ) = arity(σ). If in addition it holds that τ 6 σ we say that tr ∈ WtComm,
the set of well-typed communications.

Example 3. With b as in (1), it is easy to see that [[b]] is given by the 8 traces

put(int) get(int) put(bool) get(bool) put(int) get(int) get(bool) put(bool)
get(int) put(int) put(bool) get(bool) get(int) put(int) get(bool) put(bool)
get(int) put(bool) put(int) get(bool) get(int) get(bool) put(int) put(bool)
get(int) put(bool) get(bool) put(int) get(int) get(bool) put(bool) put(int)

Only the first of these traces belongs to Comm∗ (and even to WtComm∗). The
other traces, however, are still relevant if b is the behavior of a process placed in
a non-empty context. ut

Definition 4 (Behavior subsumption). b1 6 b2 iff [[b1]] 6 [[b2]], where the
relations 6 on Act, Trace, and P(Trace) are given by:

– on Act, 6 is the least reflexive and transitive relation satisfying that if τ 6 σ
then put(τ) 6 put(σ) and get(σ) 6 get(τ);

What Are Polymorphically-Typed Ambients? 217

– the relation 6 on Act extends pointwise to a relation 6 on Trace;
– Tr1 6 Tr2 iff for all tr1 ∈ Tr1 there exists tr2 ∈ Tr2 such that tr1 6 tr2.

Our definition of the relations b1 6 b2 and τ 6 σ may seem circular, but is not:
the development in this section shows how a relation on level i types gives rise to
a relation on level i behaviors, whereas Sect. 2.4 shows how to define a relation
on level 0 types, and how a relation on level i behaviors gives rise to a relation
on level i+1 types (since, thanks to the restriction to level 0 behaviors in Def. 1,
it induces a relation on level i behavior contexts).

The operators “ || ” and “.” on behaviors respect the relation 6; thus the
equivalence relation ≡ induced by 6 is a congruence on behaviors wrt. these
operators. Modulo ≡ it holds that “ ||” is associative and commutative and that
“.” is associative, both with ε as neutral element. Note that ε ≡ fromnow ∅.

The result below plays an important part in type checking:

Lemma 1. Given B1 and B2 behavior contexts, we can construct a level zero
behavior test such that the following conditions are equivalent:

(a) B1 6 B2
(b) B1bbc 6 B2bbc for all b (regardless of level)
(c) B1btest.testc 6 B2btest.testc.

The following definition captures the intuition that if P can be assigned a
safe behavior then all communications performed by P will be well-typed—at
least until the ambient enclosing P is dissolved.

Definition 5 (Safety). A behavior b is safe if no trace tr ∈ [[b]] can be written
tr = tr0 � tr1 � tr2 with tr0 ∈ Comm∗ and tr1 ∈ Comm \ WtComm.

Example 4. Referring back to Example 3, where the traces of a behavior b were
listed, we can now demonstrate that b is in fact safe (as claimed in Sec. 2.5).
For the first trace in b belongs to WtComm∗; the second trace can be written as
tr0 � tr with tr0 ∈ WtComm and tr not of the form tr1 � tr2 for any tr1 ∈ Comm;
and none of the remaining traces are of the form tr1 � tr2 with tr1 ∈ Comm. ut

Definition 6 (Pruning). The relation b b′, read “b prunes to b′”, amounts
to the following property: whenever there exists tr1 ∈ Comm∗ and tr such that
tr1 � diss � tr ∈ [[b]], then there exists tr ′ ∈ [[b′]] with tr 6 tr ′.

4 Subject Reduction

In this section we shall show that our type system is semantically sound. This
property is formulated as a subject reduction result (Theorem 1), intuitively
stating that “well-typed processes communicate according to their behavior” and
also stating that “well-typed safe processes never evolve into ill-typed processes”.
The latter “safety property” shows that the process ((n : int).〈n + 7〉) || 〈true〉,
though typeable, cannot be assigned a safe behavior since it evolves into the
process 〈true + 7〉, which clearly cannot be typed.

218 T. Amtoft, A.J. Kfoury, and S.M. Pericas-Geertsen

Lemma 2 (Subject congruence). Suppose that P ≡ Q. Then E ` P : b if
and only if E ` Q : b.

Assuming a suitable relationship between δ and type(), we have

Lemma 3 (Subject reduction for expressions). Suppose M1 −→ M2. If
E ` M1 : τ then also E ` M2 : τ .

The formulation of subject reduction for processes states that if a process having
behavior b performs a step labeled ` then the resulting process can be assigned a
behavior that denotes “what remains of b after `”. To formalize this, we employ
a relation ` ∼ b0 that is defined by stipulating that

ε ∼ ε

comm(τ) ∼ put(τ−).get(τ+) if τ− 6 τ 6 τ+

Theorem 1 (Subject reduction for processes). Suppose that P
`−→ Q. If

it holds that E ` P : b with b safe, then there exists b0 with ` ∼ b0 and safe b′

such that E ` Q : b′ and b0.b
′ 6 b.

5 Type Checking

In this section we show that given a complete type derivation for some process
P , we can check its validity according to the rules from Fig. 4. For that purpose,
we use techniques from the theory of finite non-deterministic automata. By in-
duction we can show that for all b it is possible to construct an automaton G
that implements b, i.e. an automaton G such that [[b]] = {tr | G accepts tr}.

Lemma 4. Assume that for τ , σ of level i it is decidable whether τ 6 σ. Let b1,
b2 be of level i. Then it is decidable whether b1 6 b2.

The method is to first construct G1 and G2 implementing b1 and b2, then con-
struct their “difference automaton” G1 \ G2, and finally to check whether the
latter rejects all inputs.

Lemma 5. Let τ , σ be of level i, and assume that for all b1, b2 of level j with
j < i it is decidable whether b1 6 b2. Then it is decidable whether τ 6 σ.

The proof is by induction on the structure of τ and σ. Whenever τ = cap[B]
and σ = cap[B′], we use Lemma 1 to test whether B 6 B′.

Theorem 2. Given b1 and b2, it is decidable whether b1 6 b2. Given τ and σ,
it is decidable whether τ 6 σ.

This follows from Lemmas 4 and 5. We also have

Lemma 6. Given behaviors b and b′, it is decidable whether b is safe, and it is
decidable whether b b′.

These results show that the side conditions for the rules (Proc Subsumption),
(Exp Subsumption), (Proc Repl) and (Proc Amb) are decidable, yielding

Theorem 3 (Decidability of type checking). Given a purported derivation
of E ` M : τ or E ` P : b, we can effectively check its validity.

What Are Polymorphically-Typed Ambients? 219

6 Discussion

Our type system is a conservative extension of the type system for AC presented
in [7, Sect. 3]. To see this, we employ a function Plus translating entities in the
latter system into entities in the former; in particular “message types” WC into
types, and “exchange types” TC into behaviors. Plus is defined recursively on
the structure of its argument; most clauses are “homomorphisms” except for

Plus(M C |[PC]|) = Plus(MC)|[Plus(PC) || coopen Plus(MC).0]|
Plus(cap[TC]) = cap[Plus(TC) || 2]

Plus(Shh) = ε

Plus(W C
1 × . . . × W C

n) = fromnow {×(Plus(W C
1), . . . ,Plus(W C

n))}

Theorem 4. Suppose that EC ` PC : TC , respectively EC ` MC : WC , is
derivable in the system of [7, Sect. 3]. Then Plus(EC) ` Plus(PC) : Plus(TC),
respectively Plus(EC) ` Plus(MC) : Plus(W C), is derivable in our system.

It is relatively straightforward to extend our system to record ambient move-
ments: we augment Act with actions enter and exit, and augment Beh with be-
haviors that are suitable abstractions of sets of traces containing these actions3.
As in [5] we can then express that an ambient is immobile. Thanks to diss and
the relation b b0, we are able to declare ambients immobile even though they
open packets that have moved, thus overcoming (as also [11] does) the problem
faced in [5]. Another application might be to predict the shape of ambients, as
done in [13] using tree grammars.

Besides the tasks mentioned in Sect. 1 (in particular type inference), future
work includes investigating the relationship to the system proposed by Levi
& Sangiorgi [11] which—using the notion of single-threadedness—made a first
attempt to rule out so-called “grave” interferences (a notion that is not precisely
defined in [11]). For that purpose we must extend our poly-typed AC+ with
coin and coout expressions, recorded also in the traces.

References

[1] Torben Amtoft, Assaf J. Kfoury, and Santiago Pericas-Geersten. What are
polymorphically-typed ambients? Technical Report BUCS-TR-2000-021, Comp.
Sci. Dept., Boston Univ., December 2000.

[2] Torben Amtoft, Flemming Nielson, and Hanne Riis Nielson. Type and Effect
Systems: Behaviours for Concurrency. Imperial College Press, 1999.

[3] Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Typed mobile objects. In
CONCUR 2000, volume 1877 of LNCS, pages 504–520, 2000.

[4] Luca Cardelli. Abstractions for mobile computation. In Jan Vitek and Chris-
tian Jensen, editors, Secure Internet Programming: Security Issues for Mobile and
Distributed Objects, volume 1603 of LNCS, pages 51–94. Springer-Verlag, 1999.

3 In fact, the type system of [23] can be viewed as such an abstraction where, e.g.,
[[YO I]] is the set of traces containing actions put(τ) with τ described by O, actions
get(τ) with τ described by I, but no enter or exit actions.

220 T. Amtoft, A.J. Kfoury, and S.M. Pericas-Geertsen

[5] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Mobility types for mobile
ambients. In Jiri Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors,
ICALP’99, volume 1644 of LNCS, pages 230–239. Springer-Verlag, July 1999.

[6] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Maurice Nivat, editor,
FoSSaCS’98, volume 1378 of LNCS, pages 140–155. Springer-Verlag, 1998.

[7] Luca Cardelli and Andrew D. Gordon. Types for mobile ambients. In POPL’99,
San Antonio, Texas, pages 79–92. ACM Press, January 1999.

[8] Cedric Fournet, Georges Gonthier, Jean-Jacques Levy, Luc Maranget, and Didier
Remy. A calculus of mobile agents. In CONCUR 1996, volume 1119 of LNCS,
pages 406–421. Springer-Verlag, 1996.

[9] Simon Gay and Malcolm Hole. Types and subtypes for client-server interactions.
In Proc. European Symp. on Programming, volume 1576 of LNCS, pages 74–90.
Springer-Verlag, 1999.

[10] Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In ESOP’98,
volume 1381 of LNCS, pages 122–138. Springer-Verlag, 1998.

[11] Francesca Levi and Davide Sangiorgi. Controlling interference in ambients. In
POPL’00, Boston, Massachusetts, pages 352–364. ACM Press, January 2000.

[12] Eugenio Moggi. Arity polymorphism and dependent types. In Subtyping & Depen-
dent Types in Programming, Ponte de Lima, Portugal, 2000. Proceedings online
at http://www-sop.inria.fr/oasis/DTP00/Proceedings/proceedings.html.

[13] Hanne Riis Nielson and Flemming Nielson. Shape analysis for mobile ambients.
In POPL’00, Boston, Massachusetts, pages 142–154. ACM Press, 2000.

[14] Benjamin C. Pierce and Davide Sangiorgi. Types and subtypes for mobile pro-
cesses. Mathematical Structures in Computer Science, 6(5):409–454, 1996. A
revised and extended version of a paper appearing at LICS’93.

[15] Benjamin C. Pierce and David N. Turner. Pict: A programming language based
on the pi-calculus. Technical report, IU, 1997.

[16] James Riely and Matthew Hennessy. Trust and partial typing in open systems
of mobile agents. In POPL’99, San Antonio, Texas, pages 93–104. ACM Press,
1999.

[17] Peter Sewell and Jan Vitek. Secure composition of insecure components. In 12th
IEEE Computer Security Foundations Workshop (CSFW-12), Mordano, Italy,
June 1999.

[18] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based lan-
guage and its typing system. In PARLE’94, volume 817 of LNCS, pages 398–413.
Springer-Verlag, 1994.

[19] David N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD
thesis, University of Edinburgh, 1995. Report no ECS-LFCS-96-345.

[20] Jan Vitek and Giuseppe Castagna. Seal: A framework for secure mobile computa-
tions. In Internet Programming Languages, volume 1686 of LNCS. Springer-Verlag,
1999.

[21] Nobuko Yoshida and Matthew Hennessy. Subtyping and locality in distributed
higher order mobile processes. In CONCUR 1999, volume 1664 of LNCS, pages
557–573. Springer-Verlag, 1999.

[22] Nobuko Yoshida and Matthew Hennessy. Assigning types to processes. In LICS
2000, pages 334–345, 2000.

[23] Pascal Zimmer. Subtyping and typing algorithms for mobile ambients. In FOS-
SACS 2000, Berlin, volume 1784 of LNCS, pages 375–390. Springer-Verlag, 2000.

	Introduction
	Background and Motivation
	Scope and Contribution of Our Research
	Motivating Example

	Types and Behaviors
	Operational Semantics
	Types and Behaviors
	Behavior Subsumption
	Subtyping
	The Type System

	Trace Semantics of Behaviors
	Subject Reduction
	Type Checking
	Discussion

