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Abstract. The rewriting calculus, or Rho Calculus (ρCal), is a simple
calculus that uniformly integrates abstraction on patterns and non-
determinism. Therefore, it fully integrates rewriting and λ-calculus. The
original presentation of the calculus was untyped. In this paper we present
a uniform way to decorate the terms of the calculus with types. This
gives raise to a new presentation à la Church, together with nine (8+1)
type systems which can be placed in a ρ-cube that extends the λ-cube
of Barendregt. Due to the matching capabilities of the calculus, the
type systems use only one abstraction mechanism and therefore gives
an original answer to the identification of the standard “λ” and “Π”
abstractors.
As a consequence, this brings matching and rewriting as the first class
concepts of the Rho-versions of the Logical Framework (LF) of Harper-
Honsell-Plotkin, and of the Calculus of Constructions (CC) of Coquand-
Huet.

1 Introduction

The first version of the simply typed lambda-calculus was proposed by
Church [Chu41] in order to build a calculus having a solid mathematical
foundation and a clear relation with logics. Since then, many other type systems
have been proposed, and a synthesis, known as the Barendregt’s λ-cube, has
been realized in [Bar92].

In dependent type theories, the arrow-types of the form A → B are replaced
by dependent products of the form ΠX:A.B, with B possibly containing X as a
free variable. We have thus an abstraction not only at the level of terms (the “λ”
operator) but an abstraction at the level of types as well (the “Π” operator).

Many works can be found in the literature [dB80,KN96,PM97,KBN99,KL01]
on the subject of unifying the “λ” and “Π” operators. In particular, a goal
of these researches is to replace the (Appl−λ) rule below, whose meta-level
application of substitution can be considered as non aesthetic, with the rule
(Appl′−λ):

Γ ` A : ΠX:C.D Γ ` B : C
Γ ` AB : D[X/B]

(Appl−λ) Γ ` A : ΠX:C.D Γ ` B : C
Γ ` AB : (ΠX:C.D)B

(Appl′−λ)

and to use the reduction on Π-redexes, i.e.: (ΠX:C.D)B →βΠ D[X/B] describing
thus the Π-abstractor at the same level as the λ-abstractor.
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The four problems related to Π-reduction are clearly emphasized by
Kamareddine et alt. [KN96,KBN99]: (1) correctness of type is no longer valid;
(2) the system is no longer safe; (3) the type of an expression may be not well-
formed; (4) the Π-redexes are not well-formed.

In [KBN99], the authors proposed some solutions for use Π-reductions:

– Infinite levels of abstraction, i.e. using infinite levels of abstractors of the
form “Λi”, such that we are able to type a function ΛiX:A.B with a type
Λi+1X:A.C, where C is the type of B. This approach is essentially inspired
by the AUTOMATH project [dB80];

– Abbreviations, i.e. extending, in typing judgments, the standard contexts Γ
with abbreviations of the form (X:A)C and adding the rule (Appl−λΠ):

Γ, (X:A)C ` B : D π ∈ {λ, Π}
Γ ` (πX:A.B)C : D[X/C]

(Appl−λΠ)

Intuitively, this rule says that if B : D can be typed using the “abbreviation”
that X of type A is C (i.e. (X:A)C), then (πX:A.B)C : D[X/C] can be typed
without this abbreviation.

In this paper we propose a different solution to the above four cited problems;
our approach is essentially based on the complete unification of the two operators
“λ” and “Π” into the only abstraction symbol present in the Rho Calculus, i.e.
the “→” operator. This unification is, so to speak, built-in in the definition of
the Rho Calculus itself.

The rewriting calculus, or Rho Calculus, integrates in a uniform way
matching, rewriting and non determinism. Its abstraction mechanism is based
on the rewrite rule formation: in a ρ-term of the form l → r, we abstract on the
ρ-term l, and it is worth noticing that when l is a variable x this corresponds
exactly to the λ-term λx.r. When an abstraction l → r is applied to the ρ-term u,
which is denoted by (l → r)•u, the evaluation mechanism is based on the binding
of the free variables present in l to the appropriate subterms of u. Indeed this
binding is realized by matching l against u, and one of the characteristic of the
calculus is to possibly use informations in the matching process such as algebraic
axioms like associativity or commutativity.

At that stage, non-determinism may come into play since the matching
process can return zero, one, or several possibilities. For each of these variable
bindings, the value of the variables are propagated in the term r yielding zero, one
of several (finite or not) results. In a restricted way this is exactly what happen in
the β-redex (λx.r) u, which is simply denoted in the syntax of the Rho Calculus
(x → r)•u, and where the match is trivially the substitution {x/u}. Therefore,
the Rho Calculus strictly contains the λ-calculus and the possibility to express
failure of evaluation or multiplicity of results is directly supported.

The expressiveness of the arrow abstractor together with its matching
powered evaluation rule makes very attractive the possibility to uniformly
express both abstraction at the level of terms and of types. Therefore, we present
and experiment a collection of nine (8 + 1) type systems for the Rho Calculus
decorated à la Church, that can be represented in a ρ-cube that extends the
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λ-cube of Barendregt. The most powerful type system in our cube (namely the
ninth one) is a variant of the plain Calculus of Constructions and it is essentially
inspired from the Extended Calculus of Constructions (ECC) of Z. Luo [Luo90].
In ECC, indeed, we have an infinite set of sorts, i.e. s ∈ {∗,2i}, with i ∈ IN,
and the extra axiom ` 2i : 2i+1 with i ∈ IN. To sum up, we come up with a
rich family of type systems which:

– provide typing mechanisms for the rewriting calculus;
– simplify and embeds the presentation of the λ-cube;
– provide an original and natural solution to the unification of the “λ” and

“Π” operators;
– make matching power a truly integrated tool for type theory and therefore

naturally integrates rewriting into type theory, and specifically into the
calculus of construction;

– open new challenging questions and conjectures about logics for the ρ-cube.

Road map of the paper. In Section 2, we present the syntax of the typed
Rho Calculus, the matching relation, some simple matching theories, the
operational semantics of the calculus, the type system, and a pictorial
classification of the type systems in a ρ-cube. In Section 3, we present several
examples of type derivations in some of the most interesting type systems.
Section 4 presents some conjectures and we conclude the paper with some future
works and perspectives.

The design and study of the ρ-cube are ongoing works. In particular, we
emphasize in the last part several questions and conjectures that we are currently
working on. The reader will find on the web pages of the authors, the latest state
of developments concerning these questions.

2 Syntax Matching and Types

We present here the syntax and operational semantics of the Rho Calculus. This
extends with a very general type discipline the calculus presented in [CK99b,
CKL00,Cir00].

2.1 Syntax

Notational Conventions. In this paper, the symbols A, B, C range over the set
T of typed terms, the symbols XT , Y T , ZT , . . . range over the infinite set V
of typed variables, the symbols aT , bT , fT . . . range over the infinite set C of
typed constants, the symbol s ranges over the infinite set S ≡ {∗,2i}i∈IN of
untyped sorts, and the symbols αT , βT , . . . range over C and V. All symbols can
be indexed. The symbol ≡ denotes syntactic identity of objects like terms or
substitutions. We assume that variables and constants have a unique type, i.e.
if XA, XB ∈ V (resp. aA, aB ∈ C), then A ≡ B. An application of a constant
function, say fA, to a term B will be denoted by f(B).
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We work modulo α-conversion, and we follow the Barendregt conven-
tion [Bar84], saying that free and bound variables have different names. The
syntax of the pseudo-terms of the Rho Calculus is defined as follows:

T ::= S | aT | XT | T → T | T •T | plain terms

null | T , T structured terms

The main intuition behind this syntax is that a rewrite rule T → T is an
abstraction, the left-hand side of which determines the bound variables and
some pattern structure. The application of a ρCal-term on another ρCal-term
is represented by “•”. The terms can be grouped together into structures built
using the “,” operator and, according to the theory behind this operator, different
structures can be obtained. We will come back to this later but, to support the
intuition, let us mention that if we define the “,” operator to be associative, then
a list structure is obtained, while if the “,” operator is specified as associative,
commutative, and idempotent, then the set structure is obtained. The term null
denotes an empty structure.

As usual, we assume that the application operator “•” associates to the left
while the “→” and the “,” operators associate to the right. The priority of the
application “•” is higher than that of the “→” operator which is in turn of higher
priority than the “,” operator.

One may notice that in the syntax of ρCal, variables (free and bound) and
constants are always annotated with a single and unique type with the only
exception of the undecorated term null: as it will become clear when presenting
the type system, this term can be assigned any type.

Example 1 (ρCal-terms). Some simple examples of ρCal-terms are:

– the term (fA→A(XA) → XA)•fA→A(aA) represents the application of the
classical rewrite rule fA→A(XA) → XA to the term fA→A(aA);

– the term XA → Y B → XA is the typed λ-term λX:A.λY :B.X;
– the term (aA, bB , cC) denotes a simple ternary structure;
– the term (aA

1 → bB
1 , aA

2 → bB
2 ) denotes a record with two fields, a1 and a2.

An important parameter of the ρCal is the matching theory T. We assume given
a theory T, defined for example equationally, and we define matching problems
in this general setting. In what follows we introduce several such theories, some
of them being used later for instantiating the general ρCal.

2.2 Typed Matching Theories

An important parameter of the ρCal is the matching theory T. We assume given
a theory T and we define matching problems in this general setting. The theories
extend the ones presented in [CKL00] in order to be compatible with the typing
discipline. Matching theories are defined equationally via the judgment:


 A =T B : C

As we will see below, this judgment is defined in terms of the typing judgment
` A : B defined in Subsection 2.4. Intuitively, its meaning is that A and B are
terms of type C and are equivalent in the theory T.
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Definition 1 (Matching Theories).

– the Empty theory T∅ of equality is defined by the following inference rules:


 A =T∅ B : D 
 B =T∅ C : D


 A =T∅ C : D
(Trans)


 A =T∅ B : C


 B =T∅ A : C
(Symm)


 A =T∅ B : E ` C|p : E ` C : D


 C[A]p =T∅ C[B]p : D
(Ctx) ` A : B


 A =T∅ A : B
(Refl)

where A[B]p denotes the term A with the term B at position p, and A|p the
term at the position p of the term A.
Note that in the theory T∅ we do not need an inference rule describing the
stability by substitution since all the theories below are defined using inference
rules exhibiting all possible instantiations for the terms.

– for a given binary symbol f , the theory of Commutativity TC(f) is defined by
T∅ plus the following inference rule:

` fC→C→D(A B) : D


 fC→C→D(A B) =TC(f) fC→C→D(B A) : D
(Comm)

– for a given binary symbol f , the theory of Associativity TA(f) is defined by
T∅ plus the following inference rule:

` fD→D→D(fD→D→D(A B) C) : D


fD→D→D(fD→D→D(A B) C) =TA(f) fD→D→D(A fD→D→D(B C)) : D
(Assoc)

– for a given binary symbol f , the theory of Idempotency TI(f) is defined by
T∅ plus the following inference rule:

` fB→B→B(A A) : B


 fB→B→B(A A) =TI(f) A : B
(Idem)

– for a given binary symbol f and a constant 0, the theory of Neutral (left and
right) element TN(f0) is defined by T∅ plus the following inference rules:

` fB→B→B(0B A) : B


 fB→B→B(0B A) =T
N(f0)

A : B
(0L)

` fB→B→B(A 0B) : B


 fB→B→B(A 0B) =T
N(f0)

A : B
(0R)

– the MultiSet theory, TMSet(f,nil), is obtained by considering the symbol f of
type A → A → A as an associative and commutative function symbol with
nil as neutral element:

TMSet(f,nil) = TA(f) ∪ TC(f) ∪ TN(fnil)

– the Set theory, TSet(f,nil), is obtained from TMSet(f,nil), by considering the
symbol f as an idempotent function symbol:

TSet(f,nil) = TMSet(f,nil) ∪ TI(f)

As already mentioned, computing the substitutions which solve the matching
(in the theory T) from a pattern A to a subject B is a fundamental element of
the ρCal. Syntactic matching is formally defined as follows:
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Definition 2 (Syntactic Matching). For a given theory T over ρCal-terms:

1. a T-match equation is a formula of the form A �T B;
2. a substitution σ is a solution of the T-match equation A �T B if σA =T B;
3. a T-matching system is a conjunction of T-match equations;
4. a substitution σ is a solution of a T-matching system if it is a solution of all

the T-match equations in it;
5. a T-matching system is trivial when all substitutions are solution of it and

we denote by F a T-matching system without solution;
6. we define the function Sol on a T-matching system T as returning the

≺-ordered1list of all T-matches of T when T is not trivial and the list
containing only σid, where σid is the identity substitution, when T is trivial.

Notice that when the matching algorithm fails to find a solution (i.e. returns F),
the function Sol returns the empty list.

Since in general we can consider arbitrary theories over ρCal-terms,
T-matching is in general undecidable, even when restricted to first-order
equational theories [JK91].

For example, in T∅, the matching substitution from a ρCal-term A to a
ρCal-term B can be computed by the rewrite system presented in Figure 1,
where the symbol ∧ is assumed to be associative and commutative, and �1, �2
are either constant symbols or the prefix notations of “,” or “•” or “→”.

�1(A1 . . . An) �T∅ �2(B1 . . . Bm) ;

{ ∧
i=1...n

Ai �T∅ Bi if �1 ≡ �2 and n = m

F otherwise

(XC �T∅ A) ∧ (XC �T∅ B) ;

{
XC �T∅ A if 
 A =T∅ B : C
F otherwise

A �T∅ XB ; F if A 6∈ V
F ∧ (A �T∅ B) ; F

Fig. 1. Rules for Typed Syntactic Matching.

Starting from a matching system T, the application of this rule set terminates
and returns either F when there are no substitutions solving the system,
or a system T′ in “normal form” from which the solution can be trivially
inferred [KK99]. This set of rules could be easily extended to matching modulo
1 We consider a total order ≺ on the set of substitutions. Such orderings always

exist [CKL00]: one can for example take the lexicographic ordering on the flattened
representation of the substitutions. The ordering on substitutions can be seen as a
parameter of the ρCal and thus can be customized by the user.
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commutativity (it is decidable too but the number of matches can then
be exponential in the size of the initial problem). It is also decidable for
associativity-commutativity [Hul79] but in the general case matching could be
as difficult as unification [Bür89].

Example 2 (Matching).

1. in T∅, if a and b are two different constants, the equation aA �T∅ bB has no
solution, and thus Sol(aA �T∅ bB) returns the empty list of substitutions;

2. in T∅, aA �T∅ aA is solved by all substitutions, and thus Sol(aA �T∅ aA)
returns the list with only one element, σid;

3. in T∅, the equation f(XA g(XA Y D)) �T∅ f(aA g(aA dD)) (f, g stand for
fA→B→C , gA→D→B) has for solution the substitution σ ≡ [XA/aA Y D/dD];

4. in TC(f) the equation f(XA Y A) �TC(f) f(aA
1 aA

2 ) (f stands for the a commu-
tative symbol fA→A→B) has the two solutions σ1 ≡ [XA/aA

1 Y A/aA
2 ] and σ2 ≡

[XA/aA
2 Y A/aA

1 ], and therefore the matching equation Sol(f(XA Y A) �TC(f)

f(aA
1 aA

2 )) is solved by the list σ1 σ2;
5. in TAN = TA(,) ∪ TN(,null), the equation (XA, aA, Y A) �TAN (aA

1 , aA, aA
2 , aA

3 )
has for solution the substitution σ ≡ [XA/aA

1 Y A/(aA
2 , aA

3 )], while the two
equations (XA, aA, Y A) �TAN (null, aA) and (XA, aA, Y A) �TAN aA have
both the same solution σ ≡ [XA/null Y A/null], since 
 aA =TAN (null, aA)
=TAN (null, aA, null) : A;

6. in TACN = TA(,) ∪ TC(,) ∪ TN(,null), the equation (XA, aA) �TACN

(aA
1 , aA, aA

2 , aA
2 ) has for solution the substitution σ ≡ [XA/(aA

1 , aA
2 , aA

3 )], since

 (aA

1 , aA, aA
2 , aA

3 ) =TACN (aA
1 , aA

2 , aA
3 , aA) : A.

2.3 Operational Semantics

Using the same notations as [CKL00], to which the reader is referred for further
discussion of the concepts, the notion of reduction on terms in T is uniformly
defined as follows: for a given ordering ≺ on substitutions (which is left implicit
in the notation), and a theory T, the operational semantics is defined by the
computational rules given in Figure 2. The central idea of the main rule of the

(ρ) (A → B)•C 7→T

{
null if A �T C has no solution

σ1B, . . . , σnB if σi ∈ Sol(A �T C), σi ≺ σi+1, n ≤ ∞
(ε) (A, B)•C 7→T A•C, B•C

(ν) null•A 7→T null

Fig. 2. Evaluation rules of the ρCal.

calculus (ρ) is that the application of a rewrite rule A → B at the root (also
called top) position of a term C, consists in computing all the solutions of the
matching equation (A �T C) in the theory T, and applying all the substitutions
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from the ≺-ordered list returned by the function Sol(A �T C) to the term
B. When there is no solution for the matching equation (A �T C) the special
constant null is obtained as result of the application. Notice that there could be
an infinity of solutions to the matching problem (A �T C), but in this paper we
restrict ourselves to the case where the matching problem is finitary.

It is important to remark that if A is a variable, then the (ρ) rule
corresponds exactly to the (β) rule of the λ-calculus, and variables manipulations
in substitutions take places externally, using α-conversion and Barendregt’s
convention if necessary.

The rules (ε) and (ν) deal with the distributivity of the application on the
structures whose constructors are “,” and null.

With respect to the previous presentation of the Rho Calculus given in
[CK99b,CK99a], we have modified the notation of the application operator,
simplified the evaluation rules, and generalized to deal with generic result
structures.

When the theory T is clear from the context, its denotation will be omitted.

Definition 3. We denote by =ρ the reflexive, symmetric, transitive, and
contextual closure of the reduction 7→T over a theory T. The relation =ρ is a
congruence relation.

When working modulo reasonably powerful theories T, the evaluation rules of
the ρCal are confluent [Cir00,CKL00].

Theorem 1 (Confluence in T∅). Given a term A such that all its abstractions
contain no arrow in the first argument, if A 7→→T∅ B and A 7→→T∅ C then there
exists a term D such that B 7→→T∅ D and C 7→→T∅ D.

2.4 The Type System

A statement is of the form A : B, with A, B ∈ T . Judgments are defined
as ` A : B, i.e. without any kind of context information: this was possible
thanks to the explicit type-decoration for all constants and variables (generically
denoted by α). We call A the subject and B the predicate of the judgment,
respectively. The type rules in Figure 3 are given in three groups: general rules
for applications/structures (common to all systems), and one specific rule schema
(characteristic to each system) parameterized by a suitable choice of sorts.

Our type system presents in fact nine type systems instead of the usual eight
present in the λ-cube; the eight type systems of the ρ-cube (natural counterparts
of the λ-cube) are defined by taking the general rules plus the specific subset
of rules {(∗, ∗), (∗,20), (20, ∗), (20,20)}. In the more general case, many other
subsets of specific rules can be obtained by considering all the following pairs
of sorts: {(∗, ∗), (∗,2i), (2i, ∗), (2i,2j)} with i, j ∈ IN. This (possibly infinite)
subset of rules gives raise to the most powerful type system ρECC, which uses
the full typing power of the ECC of Z. Luo. Figure 3 describes also all the systems
and collects it in a graphical ρ-cube. The system ρ → is essentially a variant of
the system presented in [Cir00,CK00].
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General Rules for Applications

` ∗ : 20
(Axiom∗)

i ∈ IN
` 2i : 2i+1

(Axiom2)
` A : s

` αA : A
(Start)

` B : C ` A → C : s
` A → B : A → C

(Abs) ` A : C → D ` C : E ` B : E
` A•B : (C → D)•B

(Appl)

` A : C ` B : s B =ρ C

` A : B
(Conv)

General Rules for Structures

` A : s
` null : A

(Null) ` A : C ` B : C
` A, B : C

(Struct)

Specific Rules

` A : C ` C : s1 ` B : s2

` A → B : s2
(s1, s2)

System Set of specific rules (i, j ∈ IN)
ρ → (∗, ∗)
ρ2 (∗, ∗) (20, ∗)
ρP = ρLF (∗, ∗) (∗, 20)
ρP2 (∗, ∗) (20, ∗) (∗, 20)
ρω (∗, ∗) (20, 20)
ρω (∗, ∗) (20, ∗) (20, 20)
ρPω (∗, ∗) (∗, 20) (20, 20)
ρPω = ρCC (∗, ∗) (20, ∗) (∗, 20) (20, 20)
ρECC (∗, ∗) (2i, ∗) (∗, 2i) (2i, 2j) ρ →

6

-�
��>

ρω

6

-

ρ2 -�
��>

ρω -

ρP=ρLF
�

��>

6

ρPω

6
ρP2

�
��>

ρPω = ρCC
∩

ρECC

Fig. 3. The type system rules, the generic rules, and the ρ-cube.

In order to help the reader in understanding the type system, we give here a
small explication for all the type rules and a brief comparison with the rules of
the λ-cube:

– (Axiom∗), (Axiom2). Those two rules are used in the leaves of any well-
typed derivation; in particular the rule (Axiom2) allows one to obtain a
type hierarchy similar to that of Martin-Löf type theory [Mar84];

– (Start). Only well decorated constants or variables are well typed: note that
the type is “written” in the term itself, as for example in XA, or aA;

– (Abs). This rule represents the counterpart of the λ-cube rule (Abs−λ) which
could be written in our syntax as (Abs−λρ):

Γ, X:D ` B : C Γ ` ΠX:D.C : s

Γ ` λX:D.B : ΠX:D.C
(Abs−λ)

` B : C ` XD → C : s

` XD → B : XD → C
(Abs−λρ)
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The main differences comparing to the corresponding rule in the ρ-cube are:
1. the “λ” and “Π” operators are unified into the “→” operator: in fact the

Π-operator can be considered as a limited form of the “→” abstractor,
where the pattern used for the matching is always a variable XD. In
the (Abs) rule the pattern A can be more sophisticated than a simple
variable and hence the result type of an abstraction is A → C;

2. since all variables (free and bound) are decorated by their types, the
notion of context Γ is useless, and therefore we do not need in the first
premise of the rule to enrich the context Γ with the declaration of the
bound variable XD;

3. as in the λ-cube, the second premise is a call to a specific rule (s1, s2) that
allows one to discern between the different type systems of the ρ-cube;

– (Appl). This rule represents the counterpart of the λ-cube rule (Appl−λ)
which could be written in our syntax as (Appl−λρ):

Γ ` A : ΠX:E.D Γ ` B : E
Γ ` AB : D[X/B]

(Appl−λ) ` A : XE → D ` B : E
` A•B : D[X/B]

(Appl−λρ)

The main differences comparing to the corresponding rule in the ρ-cube are:
1. in the first premise, the term A is typed with a term C → D instead of

a Π-term, where C can be any ρ-term;
2. in order to type-check the type of the argument with the domain-type

of the function, we need to check both the type of the pattern C (since
it is not necessarily a variable) and of the argument B; this task is done
by the second and the third premises;

3. the result type of the application will be in turn the type (C → D)•B, i.e.
a type not in normal-form. Note here the difference with respect to the
solution adopted in the λ-cube, where the result type was D[X/B]: this
solution takes into account, in a very natural way, all the type systems
placed in the right-hand side of the ρ-cube, i.e. the ones with dependent-
types, and enlightens the higher-order nature of the “→” operator;

– (Conv). This rule (not syntax-directed) has the same shape as the
correspondent rule in the λ-cube. When building derivations, this rule should
be used in order to reduce the type (C → D)•B to an equivalent type;

– (Null). The untyped constant null is typed with any (well-formed) type;
– (Struct). This rule for structures enforces the type of A to be the same as

the type of B; essentially we guarantee that all the terms in a structure have
exactly the same type. A more flexible rule that deals with terms having a
different type in the same structure would be (Struct′):

` A : C ` B : D
` A, B : C, D

(Struct′)

This rule would be essential for typing the object-oriented features of the
ρCal [CKL00]. This topic is subject to a current parallel study.

– (s1, s2). This rule is usually invoked in order to demonstrate the second
premise of the (Abs) rule: it is a rule schema since it represents in fact an
infinite set of type rules, depending on the shape of the sorts s1 and s2.
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Remark. Note that the more general type system ρECC differs from the original
Luo’s ECC since we do not introduce:

1. Σ-types (or, strong sum-types) ΣX:A.B;
2. a type-cumulativity order � on types, re-paraphrased in the ρCal as the

smallest partial order over ρ-terms w.r.t. conversion '2 such that:
(a) ∗ � 20 � 21 � . . . and (b) A ' A′ ∧ B � B′ =⇒ A → B � A′ → B′;

3. the “subtyping-like” rule (cum) (` A : B & ` C : 2i & B � C =⇒ ` A : C).

3 Examples

In this section we present some judgments and (by lack of space) a few type
derivations in some representative type systems of the ρ-cube, namely:

– in the system ρ →, the simply typed Rho Calculus (terms dependent on
terms);

– in the system ρ2, the polymorphic (in the sense of Girard’s system F (λ2)
[Gir86]) Rho Calculus (terms dependent on types);

– in the system ρLF , the simply typed Rho Calculus with dependent-types:
this system is the counterpart of the system LF , i.e. the Logical Framework
[HHP92] (types dependent on terms);

– in the system ρω, (types depending on types);
– in the system ρECC, the counterpart of the system ECC of Z. Luo.

Most of the examples are inspired (or re-arranged) from [Bar92]. When not
explicitly mentioned, we denote the symbol 20 by 2.

Example 3 (The Type System ρ →). In this system the following can be derived
when we consider the constants int∗ and 3int∗ :

` X int∗ : int∗
` X int∗ : int∗ ` int∗ : ∗

` X int∗ → int∗ : ∗
` X int∗ → X int∗ : X int∗ → int∗ ` X int∗ : int∗ ` 3int∗ : int∗

` (X int∗ → X int∗)•3int∗ : (X int∗ → int∗)•3int∗ (1, 2)

` (X int∗ → X int∗)•3int∗ : int∗

where (1) is ` int∗ : ∗, and (2) is (X int∗ → int∗)•3int∗ =ρ int∗, and the last applied
rule is (Conv). Proceeding in a similar way, it is not difficult to derive in ρ →
(we write f, g, h instead of fA→A, gA→A, hA→A→A):

` XA → A : ∗ ` (f(XA) → XA, g(XA) → XA)•f(aA) : A
` (f(XA) → XA)•f(aA

1 ) : A ` (h(XA Y A) → (XA, Y A))•h(aA
1 aA

2 ) : A

2 ' denotes the equivalence generated by �.
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Example 4 (The Type System ρLF ). In this system the following can be derived:

` X int∗ : int∗ ` int∗ : ∗ ` ∗ : 2

` X int∗ → ∗ : 2

` fXint∗ →∗ : X int∗ → ∗ ` X int∗ : int∗ ` 3int∗ : int∗

` fXint∗ →∗•3int∗ : (X int∗ → ∗)•3int∗ (1) (X int∗ → ∗)•3int∗ =ρ ∗
` fXint∗ →∗(3int∗) ≡ fXint∗ →∗•3int∗ : ∗

where (1) is ` ∗ : 2 the last applied rule is (Conv). Observe that the judgment
` X int∗ → ∗ : 2 can be derived thanks to the specific rule (∗,2).

In a similar way, we can easily derive the following judgments (here p, q are
used in ` pA→∗(XA) : ∗ and ` qA→∗(XA) : ∗3)

` XA → Y p(XA) → q(XA) : ∗4 ` XA → Y p(XA) → p(XA) : ∗5

` XA → Y p(XA) → Y p(XA) : XA → Y p(XA) → p(XA)6

Example 5 (The Type Systems ρ2, ρω, ρECC).

in ρ2 ` ⊥ ≡ X∗ → X∗ : ∗
` Y ∗ → Z⊥ → (Z⊥•Y ∗) : Y ∗ → Z⊥ → Y ∗7

` X∗ → Y X∗ → Y X∗
: X∗ → Y X∗ → X∗ (the polymorphic identity)

` (X∗ → f(Y X∗
) → Y X∗

)•int∗•f(3int∗) : int∗ ` X∗ → ∗ : 2

in ρω ` X∗ → X∗ : X∗ → ∗
` (X∗ → X∗)•int∗ : (X∗ → ∗)•int∗ =ρ ∗

in ρECC ` X2 → 2 : 21 and ` X2 → X2 : X2 → 2

` (X2 → X2)•Y 2 : (X2 → 2)•Y 2 =ρ 2

3.1 The Failure of the Unicity of Typing

When dealing with typed calculi, one interesting property is the unicity of typing
(up to conversion), which can be rephrased in our Rho Calculus as follows:

` A : B ∧ ` A : B′ =⇒ B =ρ B′

This property is verified in all systems defined in the λ-cube (or derivates); in
ECC [Luo90], thanks to the type cumulability relation and the (cum) type rule,
a weaker property, i.e. the minimum type property, holds:

∃B! ∀B′ ` A : B ∧ ` A : B′ =⇒ B � B′

3 Following the Curry-Howard isomorphism, if A is considered as a set, X ∈ A, and
p, q are predicates on A, then p(XA), q(XA) are types, considered as propositions.

4 This proposition states that the predicate p (on A) considered as a set is included
in the predicate q.

5 This proposition states the reflexivity of the inclusion.
6 The subject of this statement gives a “proof” of the reflexivity of the inclusion.
7 In this case, the predicate of the judgment considered as proposition says: ex falso

sequitur quodlibet, i.e. anything follows from a false judgment: the subject of this
judgment is its proof.
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The type systems in the right-hand side of the ρ-cube does not satisfies those
two properties. If we take, for example in ρLF , the ρ-term XY ∗ → Y ∗, can be
typed with both ∗ and XY ∗ → ∗. Since in the Rho Calculus the → unifies the
λ-cube symbols “λ” and “Π”, it is natural to interpret the term ` XY ∗ → Y ∗
in two different ways:

` XY ∗ → Y ∗ :
{ ∗ i.e. the term is an “arrow-type”

XY ∗ → ∗ i.e. the term is a “constructor for dependent-types”

In fact the translation of the above term into the λ-cube is ambiguous:

[[XY ∗ → Y ∗]] =
{

ΠX:Y.Y and Y : ∗ `λ→ ΠX:Y.Y : ∗
λX:Y.Y and Y : ∗ `λLF λX:Y.Y : ΠX:Y.∗

However, we conjecture that unicity of typing is valid in the left-hand side type
systems of the cube, i.e. the ones without types dependent on terms.

4 Some Conjectures and Conclusion

4.1 Conjectures

The full proof-theoretical work for the ρ-cube has to be done: however, to
stimulate the interested reader, we would like to sketch some conjectures that
should be proved in a future work. We denote `S as the symbol of derivability
in one of the type systems S of the ρ-cube.

Property 1 (Consistency). The ρ-cube is logically consistent, i.e. given a closed
term A, we have 6`S A : ⊥.

Property 2 (Correctness of Typing (in ρECC)). If `S A : B, then `ρECC B : C.
This property states in fact that we can find a correct derivation in ρECC

for any predicate of a judgment in S. It is crucial to prove subject reduction.

Property 3 (Weak Uniqueness of Typing). If `S A : B and `S A : B′ and
B 6=ρ s 6=ρ B′, then B =ρ B′.

This property states that, for the simple terms of the ρCal, we can find a
principal type. It is crucial for the decidability of type checking.

Property 4 (Subject Reduction). If `S A : B, and A 7→→ C, then `ρECC C : B
and there exists B′ such that `S C : B′ and B 7→→ B′.

This property proves that types are preserved over reduction.

Property 5 (Strong Normalization of Typable Terms). If `S A : B, then A and
B are strongly normalizing.

This property states that every typable term normalizes. It will be proved
following either the lines of [CH88,Coq91], or in a modular fashion, by first
translating the result of strong normalization for λω [Gir72] into ρω, and then
using a translation function from ρω into ρECC, in the style of [HHP92,GN91].
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Property 6 (Decidability of Type Checking). Given a Theory T and a type system
`S , it is decidable whether `S A : B for a given A, and B.

This property is probably true for the theory T∅ and it heavily depends on
the decidability of the theory T considered. In fact, the (Conv) type rule uses
the relation =ρ, which in turn depends on the theory T considered, which in
turn depends on a suitable type derivation (see Definition 2.2). This sort of
“circularity” might be a possible source of undecidability.

4.2 Conclusion

In this work we have defined a very powerful collection of nine (8+1) type systems
whose main originality consists in using only one abstractor, namely the “→”
operator of the Rho Calculus, and matching as a primitive mechanism, leading
thus to a behavior similar to the Π-reduction for types. We have enlighten with
several examples the usefulness of such a calculus, its expressive power as well as
its ability to avoid the drawbacks of the previous systems differentiating term-
abstractors (i.e. “λ”) from type-abstractors (i.e. “Π”). The full proof-theoretical
work for the ρ-cube is an ongoing work in progress.

This work opens many questions that we intend to solve now. They go
from standard (and important) ones like proving subject reduction and strong
normalization of typable terms, to extensions of the type system in order to take
heterogeneous structures into account, and to the study of the more general
setting of Pure Type Systems [Ber88,Ber90]. We would also like to explore,
following the Curry-Howard isomorphism, the possibility to define a “logical”
ρ-cube.
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