
Type Inference with Recursive Type Equations

Mario Coppo

Dipartimento di Informatica, Università di Torino,
Corso Svizzera 185, 10149 Torino, Italy

coppo@di.unito.it
http://www.di.unito.it/∼coppo

Abstract. This paper discusses decidability and existence of principal
types in type assignment systems for λ-terms in which types are
considered modulo an equivalence relation induced by a set of type
equations. There are two interesting ways of defining such equivalence,
an initial and a final one. A suitable transformation will allow to treat
both in an uniform way.

Keywords: Recursive types, type assignment.

1 Introduction

In this paper we study type inference problems in the basic type inference system
for the λ-calculus ([5], [8]) extended with recursive type definitions. For example,
assuming the existence of a type constant nil for the one element type and of
type constructors + for disjoint union and × for cartesian product, the type of
integer lists can be specified by the equation

int−list = nil + (int × int−list)

An alternative way of denoting the same type is via the use of an explicit
operator µ or recursion over types. In this case the former type is denoted by
µt.nil + (int × t). Although the use of recursive equations is closer to the way
in which recursive types are introduced in programming languages like ML ([9])
most of the technical literature on the subject has been focused on the µ-notation
(see e.g. [12]). Although the two notations are equivalent in many contexts, there
are interesting aspects in which they are not such. Taking recursive definitions
we specify in advance a finite number of recursive types that we can use for
typing a term, whereas taking µ-types we are allowed to use arbitrary recursive
types. The introduction of recursive types via recursive definitions rises questions
about typability of terms of the kind:
- Given a term M and a set R of recursive definitions can M be typed from R?
- Can the notion of principal type scheme ([8]) be generalized to type assignment
with respect to R?

While some general results about typability of terms using µ-types are well
established in the literature (see for instance [3]) there seems to be much less
about recursive definitions.

F. Honsell and M. Miculan (Eds.): FOSSACS 2001, LNCS 2030, pp. 184–198, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Type Inference with Recursive Type Equations 185

Following [7], we start by considering the notion of ”type structure” which is
a set T of types equipped with a congruence relation ' with respect to the→type
constructor. Type structures are usually defined starting from a set of equations
between types of the shape B = C, where B and C are simple type expressions.
There are two basic ways of defining an equivalence relation from a set of type
equations: an initial one in which equivalence is defined via simple equational
reasoning and a final one which amounts to consider equivalent two types if
they have the same interpretation as infinite trees. The latter is, for instance,
the notion of type equivalence determined by the type checking algorithms of
most programming languages, starting from ALGOL60. Tree equivalence is also
the notion of equality induced by the interpretations of types in continuous
models (see [3]). We will define a transformation to reduce tree equivalence to
the equational one. This allows to treat both equivalences in an uniform way.

In this paper we take → as the only type constructor, but this is enough to
define quite interesting type assignments. For example it is well known that,
assuming a type c such that c = c → A (where A is any type) one can assign
type (A→A)→A to the fixed point combinator Y = λf.(λx.f(xx))(λx.f(xx)),
permitting to type recursive functions over values without assuming an ”ad-hoc”
constant for this. Other type constructors, as those used in the introductory
example, can be added easily.

The basic definitions and properties about type structures and type equalities
are given in sections 2 while type assignment is introduced in section 3. Section
4 is about some basic properties of type equivalence. The results concerning type
assignment are given in section 5. The basic source for this paper is [11] in which
some basic properties of recursive definition are established. Type inference,
however, is not discussed in that paper.

2 Type Structures and Type Constraints

Following [7], we we start by defining the notion of type structure. This notion
was first motivated by Scott [10] and formally developed in Breazu Tannen and
Meyer [2].

Type Structures

The main feature of recursive types is that one makes identifications between
them. In a type structure types are taken modulo a congruence relation.

Definition 1. Let T be a set of syntactic objects (types) closed under the →
type constructor. A type structure over T is a pair T = 〈T,'〉 where ' is a
congruence over T (i.e. an equivalence relation such that A ' A′ and B ' B′

implies A→A′ ' B→B′).

We mainly consider a set T of types built from a denumerable set A of atomic
types by the→ type constructor1. We will sometime write T(A) to make explicit
1 There are other interesting sets of types that naturally build a type structure like

that of µ-types defined in the introduction.

186 M. Coppo

the set of atomic types we have started from. The notion of atomic type here is
only a syntactic one: an atomic type can be equivalent via ' to a non atomic
one.

The set T of simple types is isomorphic to free type structure 〈T,≡〉, that
will be identified with T itself.

Definition 2.
(i) A mapping h : T→T is a type homomorphism if h(A→B) = h(A)→h(B).

(ii) Let T = 〈T,'〉 and T ′ = 〈T,'′〉 be type structures. A type homomor-
phism h : T→T is a type structure homomorphism (written also h : T →T ′) if
A ' B ⇒ h(A) '′ h(B).

Remark 1. Note that if T = 〈T(A),'〉, any type homomorphism h : T → T ′,
where T ′ is any other type structure, is uniquely determined by its restriction
on the atomic types in A. We will then define an homomorphism h by giving
only its value on the atomic types.

A substitution (in the usual sense) is a type homomorphism. A substitution
is a homomorphism between free type structures but not, in general, between
arbitrary ones. We denote with [a1 := A1, . . . , an := An] the type homomor-
phism h : T → T determined by h(a1) = A1, h(an) = An and h(a) = a for all
other atomic types a /∈ {a1, . . . , an}. In this case e say that h is a finite type
homomorphism.

Type structure homomorphisms are closed under composition (indeed type
structures with homomorphisms form a category).

Definition 3 (Invertibility). Let 〈T,'〉 be a type structure. Then ' is said
to be invertible if (A→B) ' (A′ →B′) ⇒ A ' A′ and B ' B′.

We also say that the relation ' over T is invertible.

Invertibility holds, for instance, in a free type structure.

Type Constraints and Recursive Definitions

A very natural way of generating type structures is to assume a (finite) set of
equations between types and to take the congruence generated by it via equa-
tional reasoning. A stronger way of generating a congruence between types (in-
terpreting them in the domain of trees) will be considered in the next section.

Definition 4. A system of type constraints over T is a set
C = {Ai =Bi | 1 ≤ i ≤ n} of formal equations between types in T.

A system of type constraints determines, via standard equational reasoning,
a congruence between types.

Type Inference with Recursive Type Equations 187

Definition 5. Let C = {Ai =Bi | 1 ≤ i ≤ n}, be a system of type constrains over
T. The congruence relation determined by C (notation =C) is the least relation
satisfying the following axioms and rules:

(eq) ` A =C B if A = B ∈ C (ident) ` A =C A

(symm)
` A =C B

` B =C A
(trans)

` A =C B ` B =C C

` A =C C

(→)
` A =C A′ ` B =C B′

` A→B =C A′ →B′

We call =C the equational equivalence over T induced by C.
Let TC do denote the type structure 〈T,=C〉.
The relation =C is the minimal congruence over T generated by the equations
in C. A basic related notion is the following.

Definition 6. A type structure T = 〈T′,'〉 solves a system of type constraints
C over T if there is a type structure homomorphism h : TC → T . We also say
that h solves C in T .

Note that h solves C in T = 〈T′,'〉 iff h(A) ' h(B) for all A = B ∈ C.
In the definition of recursive types we are particularly interested in the type

structures generated by a system of type constraints of the shape c = C where
c is an atom and C is a non atomic type expression. This corresponds to the
idea of defining type c as equivalent to a type expression C containing possibly
c itself. More formally:

Definition 7 (Simultaneous recursion).
(i) A system of type constraints R over T is a simultaneous recursion (s.r.

for short) if it has the form R = {ci = Ci | 1 ≤ i ≤ n}. where
1. for all 1 ≤ i ≤ n, ci is atomic and Ci ∈ T;
2. ci 6≡ cj for all i 6= j;
3. if Ci ≡ cj for some 1 ≤ i, j ≤ n then i < j.

We call {c1, . . . , cn} the domain of R, and denote it by dom(R). The atoms
c1, . . . , cn are called the indeterminates of the s.r..

(ii) A s.r. is proper if Ci is not atomic for all 1 ≤ i ≤ n.

Example 1. Let R1 = {c1 = t → c1} where t is a type variable is a s.r. defining
a type c such that c1 =R1 t → c1 =R1 t → t → c1 . . . and so on. Define
now R2 = {c2 = t → t → c2}. Note that c2 6=R2 t → c2. Indeed if we take
R3 = R1 ∪ R2 we have that c1 6=R3 c2.

In general an s.r. satisfies point 3. above if it can be defined a total order <
on its domain such that if there is an equation c = c′ ∈ R then c < c′. This
restriction is introduced to rule out circular equations like c = c or c1 = c2, c2 =

188 M. Coppo

c1 which have no interesting meaning. Notice that in a s.r. we can eliminate any
equation of the shape ci = cj (i 6= j) simply by replacing ci by cj in R (or vice
versa).

We call unfolding the operation of replacing ci by Ci in a type and folding
the reverse operation. So, two types are weakly equivalent w.r.t. C if they can
be transformed one into the other by a finite number of applications of the
operations folding and unfolding.

Definition 8. Let R be a s.r. over T. The kernel of R is the set ker(R) ⊆ R
containing all equations c = C ∈ R such that c =R A for some non atomic
type A containing at least one occurrence in c.

It is a simple exercise to design an algorithm to test whether an indeterminate
c is in the kernel of R. The kernel of R determines essentially the set of new
types defined via R. An equation c = C which is not in ker(R) is simply a way
of giving ”name” c to type C, but is uninteresting from our point of view.

The Tree Equivalence of Types

Consider Example 1 above. Types like c1 and c2, although not equivalent with
respect to =R3 , seem to express the same informal behaviour. Indeed c1 and
c2 represent to the same (infinite) type when the they are “pushed down” by
repeated steps of unfolding. Another notion of equivalence between recursive
type expressions can be defined by regarding them as finitary descriptions of
infinite trees: this approach is followed systematically in [3] and is indeed the
most popular way of considering type equivalence in programming languages
([12]).

For the basic notions about infinite and regular trees we refer to [4]). Recall
that an infinite trees is regular if it has only a finite number of subtrees. An
example of regular tree is the following tree α0:

""
t

t

""

QQ
. . .

→
QQ

→

Indeed α0 has only two subtrees, t and α0 itself.
Let TrR(A) denote the set of regular trees defined starting from a set A of

atomic types (A will be omitted when understood). Let TrF (A) ⊆ TrR(A) be
the set of finite trees. TrF (A) and T(A) are isomorphic and will be identified.

Note that 〈TrR,≡〉 is a type structure, that we identify with TrR. It is im-
mediate to verify that TrR is invertible.

There is a standard way of interpreting recursive types as infinite trees.

Definition 9. Let R be a s.r. over T. Let (−)∗
R : TR →TrR be the type structure

homomorphism defined in the following way:

Type Inference with Recursive Type Equations 189

1. If A ≡ a for some a ∈ A such that a /∈ dom(R) then (A)∗
R is a leaf a.

2. If A ≡ B→C for some B, C ∈ T then (A)∗
R is

(B)∗
R

"
""

(C)∗
R

QQ

→

3. If A ≡ c for some c ∈ dom(R) such that c = C ∈ R then (c)∗
R=(C)∗

R.

Note that this is not an inductive definition but a co-inductive one since C
in case 3. is in general more complex than c. Note that, owing to condition 3. of
Definition 7, (A)∗

R is always well defined.
It is well known ([4]) that if R is finite (A)∗

R is a regular tree for all A ∈ T.
The map (−)∗

R induces the following notion of equivalence between types.

Definition 10. (i) Let R be a s.r over T. Let =∗
R be the relation over T

defined by A =∗
R B if (A)∗

R = (B)∗
R. We call =∗

R the tree equivalence over T
induced by R.

(ii) Let T ∗
R = 〈T,=∗

R〉 be the type structure determined by =∗
R.

It is easy to see that =∗
R is a congruence with respect to → and hence that

〈T,=∗
R〉 is well defined and =R⊆=∗

R. Then there is a (unique) homomorphism
i∗ : TR →T ∗

R which coincides with the identity at the type level.
Referring to example 1 it is easy to see that c2 =∗

R2
t→c2 and that c1 =∗

R3
c2.

Clearly =∗
R has a more semantic nature than =R and is indeed the type

equivalence induced by the interpretation of types in continuous models ([3]).
Axiomatizations of =∗

R are usually given using some co-induction principle (see
for instance [1]). However =∗

R can be also characterized as the equational theory
of a suitable s.r. R∗.

Theorem 1. Let R be an s.r. over T. Then there is s.r. R∗ such that:
(i) For all A, B ∈ T A =∗

R B iff A =R∗ B.
(ii) T ∗

R is isomorphic to TR∗ .

We can give here only an example of this construction. The complete proof
will be contained in a forthcoming paper. Let R = {c1 = t→ t→c1} we proceed
through the following steps:

1. We first transform R in its flat form f(R), in which every equation is of the
shape c = a where a ∈ A or c = d→ e where both c and d are indeterminates.
This may require the introduction of new indeterminates. In the case of our
example we have f(R1) = {c1 = d1 → d2, d1 = t, d2 = d3 → c1, d3 = t}, where
d1, d2, d3 are new indeterminates.

2. Then define by an iterative construction a relation u on the indetermi-
nates of f(R) such that a u b if and only if a and b have the same infinite
unfolding (this is the crucial step of the construction). In our example we get
c1 u d2 and d1 u d3.

190 M. Coppo

3. Now apply to f(R) a transformation c(−) that identifies (by adding suit-
able equations) all the indeterminates that are equated by u. In our case we get
c(f(R)) = {c1 = d1 →c1, d2 = c1, d1 = t, d3 = d1}.

4. Lastly apply to c(f(R)) a transformation s(−) which removes all the in-
determinates introduced by f(−) in step 1. and define R∗ = s(c(f(R))). In our
case we get R∗ = {c1 = t→c1}.

It is easy to see that R∗ has the same indeterminates of R and satisfies
Theorem 1.

3 λ-Calculi with Recursive Types

Type assignment in a generic type structure T = 〈T,'〉 is defined by intro-
ducing a rule to consider types modulo the equivalence determined by T .

The judgements of the inference system are of the shape Γ `T M : A where
Γ denotes a type environment, i.e. a set of assumptions of the shape x : A, where
x is a term variable and A a type.

Definition 11. Let T = 〈T,'〉 be a Type structure and A, B ∈ T. Then the
inference rules for assigning types to λ-terms from T are the following:

(ax) Γ, x : A `T x : A (→E)
Γ `T M : A → B Γ `T N : A

Γ `T (M N) : B

(→I)
Γ, x : A `T M : B

Γ `T λx.M : A → B
(equiv)

Γ `T M : A A ' B

Γ `T M : B

If C is a system of type constraints, we simply write Γ `C M : A for Γ `TC
M : A and Γ `∗

C M : A instead of Γ `T ∗
C M : A (in case C is a s.r.).

Type assignment in different type structures can be related via the notion of
type structure homomorphism. The following property can easily be proved by
induction on derivations.

Lemma 1. Let h : T →T ′ be a type structure homomorphism. Then
Γ `T M : A ⇒ h(Γ) `T ′ M : h(A)

where h(Γ) is obtained by applying h to all type occurrences in Γ .

For example since there is a homomorphism i∗ : 〈T,=R〉→〈T,=∗
R〉 we have

that any term which can be typed in TR can also be typed (with the same types)
in T ∗

R.
A remarkable property of type assignment is subject reduction which states

that typings of terms are preserved by β-reduction. The following property char-
acterizing the type systems in which subject reduction hold has been proved by
R. Statman in [11].

Theorem 2. A type assignment system `T has the subject reduction property
iff T is invertible.

We will see in the next section that if C is a system of type constraints =C
is invertible iff C is equivalent to a s.r.. Then it is mostly interesting to study
assignment in type structures determined by a s.r..

Type Inference with Recursive Type Equations 191

4 Some Properties of Simultaneous Recursions

In this section we state some properties of the equivalence between types induced
by a s.r. or by a systems of type constraints. We are mainly concerned in studying
the solvability of a system of type constraints in a s.r.. Many results of this section
are essentially due to R. Statman ([11]).

The Term Rewriting System Associated to a S.R.

Definition 12. (i) Let C and C′ be two systems of type constraints over the
same set TA of types. `C C′ means that `C A=B for all equations A=B ∈ C′.

(ii) C and C′ are equivalent (notation C ∼ C′) if `C C′ and `C′ C.

Note that C is equivalent to C′ if =C and =C′ coincide.

Given a s.r. R we define now a Church-Rosser and strongly normalizing term
rewriting system which generates =R. The construction is a slight modification
of the original one given by Statman [11], to which we refer for the proofs. A
more structured but less direct approach is given in Marz [7].

Definition 13. Let R = {ci = Ci | 1 ≤ i ≤ n} be an s.r. over T. The rewriting
system Trs(R) contains a rewriting rules Ci ; ci for all ci = Ci ∈ R.

Note that =R is the convertibility relation over T × T generated by Trs(R).
It is easy to see that Trs(R) is strongly normalizing, because each contraction

either decreases the size of the type to which it is applied or is of the shape
cj ; ci where i < j. However, ; it is not, in general, Church-Rosser.

Example 2. Let R = {c0 = c0 → c2, c1 = (c0 → c2) → c2, c2 = c0 → c1}. Then
Trs(R) consists of the rules {c0 → c2 ; c0, (c0 → c2)→ c2 ; c1, c0 → c1 ; c2}.
Observe that the l.h.s. of the first equation is a subterm of the l.h.s. of the second
one. In particular (c0 →c2)→c2 can be reduced both to c1 and to c0 →c2 which
further reduces to c0: it has then two distinct normal forms c1 and c0. Therefore
Trs(R) is not confluent.

Expressions like c0 → c2 and (c0 → c2) → c2 (called critical pairs in the
literature on term rewriting systems [6]) destroy confluence. By a well known
result of Knuth and Bendix (see [6, Corollary 2.4.14]) a strongly normalizing
term rewriting system without critical pairs is Church-Rosser.

The following algorithm, which amounts to Knuth-Bendix completion (see
[6]), transforms any s.r. into an equivalent one without critical pairs which has,
therefore, the Church-Rosser property.

Definition 14 (Completion of R).
(i) Let R be a s.r.. We define by induction on n a sequence of s.r. Rn (n ≥ 0).
Let R0 = R. Define Rn+1 from Rn (n ≥ 0) in the following way:

192 M. Coppo

1. if there exists a pair of equations ci = Ci, cj = Cj ∈ Rn such that Cj is
not atomic and is a proper subexpression of Ci take

Rn+1 = (Rn − {ci =Ci}) ∪ {ci =C∗
i }

where C∗
i is the result of replacing all occurrences of Cj in Ci by cj.

2. If there exist two equations ci = C, cj = C ∈ Rn then, assuming i < j,
take Rn+1 = Rn[ci := cj] ∪ {ci = cj}.

3. otherwise take Rn+1 = Rn.
(ii) Let N be the least n such that Rn+1 = Rn (this value must certainly exist

since, in both steps 1 and 2 the total number of symbols in Rn strictly decreases).
Let Trs+(R) = Trs(RN).

It is easy to prove by induction on n that for all n ≥ 0 Rn is a s.r. equivalent
to R. Then Trs(RN) has no critical pairs (by construction) and generates the
same equality as R.

Applying this construction to Example 2 get N = 2 and the resulting s.r. is
R2 = {c1 = c0 →c2, c2 = c0 →c0, c0 = c1} and then we get
Trs+(R) = {c0 →c2 ; c1, c0 →c0 ; c2, c1 ; c0}.

Lemma 2. Let R be a s.r.. Then Trs+(R) is strongly normalizing and Church-
Rosser.

Corollary 1. Let R be a s.r.. Then =R is decidable. ut

Using Trs+(R) it can be proved the invertibility of =R (see [11] for details).

Theorem 3. Let R be a s.r.. Then =R is invertible.

Solving a S.R. in Another

It is sometimes useful to force a type system generated by a set of type constraints
C to have the invertibility property.

Definition 15. Let C be a system of type constraints over TA. The relation =inv
C

is defined by adding to the axioms and rules of Definition 5 the following rule
for invertibility

(inv)
` A1 →A2 =inv

C B1 →B2

` Ai =inv
C Bi

(i = 1, 2)

Then =inv
C is the least invertible congruence containing =C .

If A is type expression its length (denoted |A|) is defined as the number
of symbols occurring in it. The following construction is essentially taken from
([11]).

Type Inference with Recursive Type Equations 193

Definition 16. Let C a system of type constraints. As in Definition 14 we define
by induction on n a sequence of sets of equations Cn (n ≥ 0). We can assume
without less of generality that there is a total order between the atomic types
occurring in C, that will be denoted by c1, c2, . . .). Let C0 = C. Define Cn+1 from
Cn (n ≥ 0) in the following way:

1. If there is an equation A→B = C →D ∈ Cn then take

Cn+1 = Cn − {A→B = A′ →B′} ∪ {A = A′, B = B′};

2. If there are two equations c = A → B, c = A′ → B′ ∈ Cn, assuming
|A→B| ≤ |A′ →B′|, then take

Cn+1 = Cn − {c = A′ →B′} ∪ {A = A′, B = B′};

3. Otherwise take Cn+1 = Cn.
Let N be the least n such that Cn+1 = Cn (it is easy to prove that value must
certainly exist). Note that we can write CN = R ∪ E where R contains all equa-
tions of the shape c = C such that C is not atomic and E is a set of equations of
the shape ci = cj such that both ci and cj are atomic. Now take the equivalence
classes of the atomic types occurring in E with respect to the E itself (seen as a
set of type constraints). For each equivalence class c with respect to E with more
than one element choose as representative the element cj ∈ c with the greatest
index, replace with cj each occurrence of an element of c in R and add to R an
equations c = cj for each element c ∈ c different from cj.
Lastly define Cinv as the so obtained s.r..

It is immediate to prove, by induction on n, that for all n ≥ 0 Cn ` C and
C `inv Cn. We have immediately the following result.

Lemma 3. Let C a system of type constraints. Then C `inv Cinv and Cinv ` C
(i.e. Cinv is equivalent to C plus invertibility).

From Theorem 3 we have immediately that a system of type constraint is
invertible iff it is equivalent to a s.r.

Let now C be a system of type constraints over T. We say that a s.r. R over T′

solves C if 〈T′,=R〉 solves C (see Definition 6). Another immediate consequence
of Theorem 3 is the following.

Lemma 4. Let C be a system of type constraints and R a s.r.. Then
h : 〈T,=C〉 → 〈T,=R〉 iff h : 〈T,=inv

C 〉 → 〈T,=R〉, i.e. R solves C iff R solves
Cinv.

Owing to lemma 4 we are mainly interested to study solvability of a s.r. into
another one. The following lemma is an extension of a result proved in [11].

Lemma 5. Let R = {ci = Ci | 1 ≤ i ≤ n} be a s.r. over T and let a1, . . . , ap

(p ≥ 0) the other variables occurring in ker(R). If S is another s.r. over T any
homomorphism h : 〈T,=R〉→〈T,=S〉 (solving R in S) can be written as

h = h ◦ h

where h : 〈T,=R〉→〈T,=S〉 and h : 〈T,=S〉→〈T,=S〉 are such that:

194 M. Coppo

1. h = [c1 := B1, . . . , cn := Bn, a1 := A1, . . . , ap := Ap] is a finite ho-
momorphism which solves R in S where both B1, . . . , Bn and A1, . . . , An are
subexpressions of some Trs+(R)−redex.

2. h′ ◦ h solves R in S for any homomorphism h′ : 〈T,=S〉→〈T,=S〉;
We say that h is an essential solution of R in S.

Example 3. (i) Let R0 = {a = a→ b} be an s.r.. We want to find a solution of
R0 in the s.r. R1 = {c = c→ c}. By point 1. of the Lemma both h(a) and h(b)
must be subterms of some redex in Trs+(R1). Note that the only redex in R1 is
c→c. Indeed choosing hk(a) = hk(b) = (c→c) we have a solution of R0 in R1.

(ii) Let now R′
1 = {c = c → c, c′ = c′ → c′} and note that c 6=R′

1
c′. So,

besides hk, also the homomorphism h′
k defined by h′

k(a) = h′
k(b) = (c′ → c′)

solves R0 in R′
1. But note that hk 6= h′

k.

Since there are a finite number of Trs+(R)−redexes (the l.h.s. of the equa-
tions left in RN) we have immediately the following corollary.

Corollary 2. It is decidable whether a s.r. R solves a system C of equations
over TA.

Statman [11] has shown that the solvability of a s.r. in another s.r. is in
general a NP-complete problem. A last property will be needed in the following
section.

Lemma 6. Let R be a s.r. over T and P = {〈Ai, Bi〉 | 1 ≤ i ≤ n} be a set
of pair of types in T. Then it is decidable whether there is a type structure
homomorphism h : TR →TR such that h(Ai) = Bi for all 1 ≤ i ≤ n (in this case
we say that h solves P).

Proof. Let’s define a sequence Pm (m ≥ 0) where Pm is either a set of pair of
types or FAIL. Let P0 = P. Then define Pm+1 from Pm in the following way:
a. If there is a pair 〈A1 →A2, B〉 ∈ Pm we have the following cases.

1. If B 6=R B1 →B2 for some types B1 and B2 then Pm+1 = FAIL.
2. Otherwise let Pm+1 = Pm − {〈A1 →A2, B〉} ∪ {〈Al, Bl〉 | l = 1, 2}.

b. Otherwise take all pairs 〈c, A〉 ∈ Pm such that c is an indeterminate of R
and set Pm+1 = Pm ∪ {〈C, A〉 | 〈c, A〉 ∈ Pm and c = C ∈ R}.

Let’s say that Pm is flatten if it contains only pairs of the shape 〈a, A〉 where
a is atomic. Now it is easy to prove that either Pm = FAIL for some m > 0 or
there is an N > 0 such that

1. PN is flatten.
2. for all n > N such that Pn is flatten we have that Pn = PN .

The proof of this follows from the observation that all types occurring Pm for
m ≥ 0 must be subtypes of some type occurring in P or in some Ci.
It is immediate to prove, by induction on m, that there is a solution of P iff
there is a solution of Pm.

Now for each a ∈ A let
Ba = {B | a = B ∈ PN} ∪ {C | a ∈ dom(R) and a = C ∈ R}.

Type Inference with Recursive Type Equations 195

Let e1, . . . , em (1 ≤ m ≤ n) denote the atoms a ∈ A such that Ba 6= ∅. Now for
all ej (1 ≤ j ≤ m) and for all B′, B′′ ∈ Bej check that B′ =R B′′. If this is true
then h = [e1 := B1, . . . , em := Bm], where Bi ∈ Bei for all 1 ≤ i ≤ n, solves P.
Otherwise there is no h which solves it.

Example 4. Let R = {c1 = c2 → c1, c2 = c1 → c2} and let P = {〈c1, c2〉}. Then
we have P1 = {〈c2 →c1, c2〉} and P2 = {〈c2, c1〉, 〈c1, c2〉}

It is easy to see that P5 = P2 and then N = 2. So let h be defined as
h(c1) = c2 and h(c2) = c1. It is immediate to verify that h(ci) = h(Ci) for
i = 1, 2. Then h solves P. Note that setting only h(c1) = c2 would not give the
correct solution. This shows the necessity of step b in the definition of h.

5 Finding Types

We consider now some natural problems about the typability of a λ-term in an
inference system with recursive types. The questions that we will consider are
the following. Let M be a given untyped λ-term:

1. Does it exist a s.r. R, a type environment Γ and a type A such that
Γ `R M : A?

2. Given a s.r. R does there exist a type environment Γ and a type A such
that Γ `R M : A?

3. Given a s.r. R, a type environment Γ and a type A does Γ `R M : A hold?

The same questions can be stated for the corresponding systems with tree
equivalence, i.e. with `∗

R instead of `R. We will prove that all these questions
are decidable for both notions of equivalence.

Theorem 1 which reduces tree equivalence to the equational one allows to
threat both equivalences in a uniform way. The decidability of question 1. was
well known (see for instance [3] or [7]) but there seems to be no published proof
of the decidability of 2. and 3..

Note that in this paper recursive types are not considered in polymorphic
sense. For instance an equation like c = t→c represent only itself and not all its
possible instances via t. It would be interesting to allow s.r.s to contain schemes
like ∀t.c[t] = t → c[t] rather then simple equations, but this is left for further
research.

To keep technical details simple we investigate these problems for pure λ-
terms (without term constants). All results however can be generalized in a
quite straightforward way to terms including constants (see remark 2).

Using type structure homomorphisms we can define, in a quite natural way,
a notion of principal type scheme for type assignments with respect to arbitrary
invertible type structures. In the following definition we assume, without loss of
generality, that all free and bound variables in a term have distinct names.

Definition 17. Let M be a pure λ-term. The system of type constraints CM ,
the basis ΓM and type TM are defined as follows.
Let S = S1 ∪ S2 where S1 is set of all bound and free variables of M and S2

196 M. Coppo

is the set of all occurrences of subterms of M which are not variables. Take a
set IM of atomic types such that there is a bijection π : S → IM . Then define a
system of type constraints CM over TIM

in the following way.
(a) For every λx.P ∈ S2 put π(λx.P) = π(x)→π(P) in CM ;
(b) For every P = (P1P2) put π(P1) = π(P2)→π(P) in CM .

Now let ΓM = {x : π(x) | x is free in M} and TM = π(M).

Lemma 7. Let M be λ-term. Then ΓM `CM
M : TM .

Example 5. Consider the term λx.(xx) and assume π(x) = i1, π(xx) = i2,
π(λx.(xx)) = i3. Then we have Cλx.(xx) = {i1 = i1 → i2, i3 = i1 → i2}. Moreover
we have Γλx.(xx) = ∅, Tλx.(xx) = i3.

Note that CM is a system of type constraints but not, in general, a s.r.. In
fact in general we can have many equations with the same left hand side.

Indeed to type any pure λ-term it would be enough to take a s.r. with only
one equation R0 = {c = c → c}. However the typings obtained assuming R0
are trivial and not interesting. CM , instead, gives the weakest type constraints
necessary to type M , and then gives more informations about the structure of
M . But there are obviously terms which can be typed only with respect to R0,
like (λx.(xx))(λy.y) (we leave to the reader to show this).
We will remark (see Remark 2) that the problem of typability is not more trivial
when term and type constants are considered.

For the proof of this theorem, which was more or less known as folklore of
the subject, we refer to [7].

Theorem 4. Let M be a Λ-term and T = 〈T,'〉 be a type structure. Then

Γ `T M : A

iff there is a type structure homomorphism

h : 〈TIM
,=CM

〉→T
such that A ' h(TM) and h(ΓM) is a subset (modulo ') of Γ .

Theorem 4 is a straightforward generalization of the Principal Type Theorem
for Simple Curry’s assignment system. The terms for which CM can be solved in
an empty s.r. (i.e. no equation between types assumed) are exactly these typable
in Curry’s system. A generalization of Theorem 4 is the following.

Theorem 5. (i) Let M be a Λ-term and R a s.r. over T. Then there is a
finite set H = {hR

M,1, . . . , h
R
M,k} (k ≥ 0) of type structure homomorphisms

hR
M,i : 〈T(IM),=CM

〉→TR such that:
1) hR

M,i(ΓM) `R M : hR
M,i(TM)

2) Γ `R M : A for some environment Γ and type A iff for some 1 ≤ i ≤ k
there is a type structure homomorphism h′ : TR → TR such that A =R h′ ◦
hR

M,i(TM) and h′ ◦ hR
M,i(ΓM) is a subset (modulo =R) of Γ .

(ii) The same property holds for `∗
R, replacing TR with T ∗

R and =R with =∗
R.

Type Inference with Recursive Type Equations 197

Proof. (i) If T = T(A) we can assume without loss of generality that IM ⊆ A.
The proof follows by Theorem 4 and Lemma 5, observing that any homomor-
phism h : 〈T,=CM

〉→TR gives a solution of CM in R and then, by Lemma 4, of
CM

inv in R. So we take H as the set of the essential solutions of CM
inv in R.

(ii) Apply (i) by replacing `∗
R with `R∗ , where R∗ is built as in the proof of

Theorem 1.

Some direct consequences of this theorem are the following.

Theorem 6. (i) Given a pure λ-term M and an s.r. R it is decidable whether
there exist a type environment Γ and a type A such Γ `R M : A.

(ii) Given a pure λ-term M , an s.r. R, a type context Γ and a type A it is
decidable whether Γ `R M : A

(iii) Both i) and ii) hold also for `∗
R (i.e. replacing `R by `∗

R).

Proof. (i) By Theorem 5 we have that a term can be types with respect to R
only if CM can be solved in R. The property then follows by Lemma 2
(ii) Assume Γ `R M : A. We can assume without loss of generality that Γ
contains all and only the variables free in M . By Lemma 4 and Theorem 5 there
is a type structure homomorphism h′◦h : 〈T, CM 〉→TR such that A ' h′◦h(TM)
and h′ ◦ h(ΓM) =R Γ , where h ∈ H, the set of essential solutions of CM in R,
and h′ : TR →TR. Referring to Definition 17, let X = {i | x ∈ FV (M) and x :
Ai ∈ Γ and π(x) = i}. Then h′ must be such that:

- h′(h(TM)) = A;
- h′(h(i)) = Ai for all i ∈ X .

We get the result from Lemma 6 and the fact that H has a finite number of
elements.
(iii) Immediate from Theorem 1.

Remark 2 (About Term Constants). If M can contain occurrences of term con-
stants then we must assume a set K of constants types, like the type int of
integers. Moreover to each term constants c we associate a type τ(c) which is
usually a constant of first order type (for instance if 3 is a numeral τ(3) = int).
It is standard to assume that constant types can be equivalent only to them-
selves, and one is not allowed to equate them to other types, for instance int to
an arrow type. We say that CM is consistent if it does not imply any equation
κ = C where κ is a constant type and C is a either a different constant type or
a non atomic expression. Then as a consequence of Theorem 4 a term M can be
typed (w.r.t. some type structure) iff CM is consistent.

We can easily take that into account constants in the construction of Defini-
tion 17 by adding to CM an equation π(c) = τ(c) for each constant c occurring
in M . To check now that CM is consistent it is enough to build CM

inv. We can
easily prove that CM is consistent iff for each atomic constant type κ there are
in CM

inv equations κ = a1, a1 = a2, . . . , an = C where C is either a constant
different from κ or a non atomic type expression. It is then decidable if CM is
consistent.

198 M. Coppo

All the results given this section still hold if we consider terms with constants
(in the previous sense). In some cases this makes these results more interesting.
For instance Problem 1. (to decide whether a given term has a type w.r.t. some
s.r.) is not trivial any more since there are terms, like (3 3), which have no type
w.r.t. any s.r.. By the subject reduction theorem, moreover, we still have that
a term to which it can be given a type (in any consistent s.r.) can not produce
bad applications during its evaluation.

Acknowledgments. The author acknowledge H. Barendregt, W. Dekkers and
the anonymous referees for their helpful suggestions.

References

1. M. Brandt and F. Henglein. Coinductive axiomatization of recursive type equality
and subtyping. In P. de Groote and J. R. Hindley, editors, Typed Lambda Calculi
and Applications, volume 1210 of Lecture Notes in Computer Science, pages 63–81.
Springer-Verlag, 1997.

2. V. Breazu-Tannen and A. Meyer. Lambda calculus with constrained types. In
R. Parikh, editor, Logics of Programs, volume 193 of Lecture Notes in Computer
Science, pages 23–40. Springer-Verlag, 1985.

3. F. Cardone and M. Coppo. Type inference with recursive types. Syntax and Se-
mantics. Information and Computation, 92(1):48–80, 1991.

4. B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Sci-
ence, 25:95–169, 1983.

5. J.R. Hindley. The principal type scheme of an object in combinatory logic. Trans-
actions of the American Mathematical Society, 146:29–60, 1969.

6. J.W. Klop. Term rewriting systems. In Dov M. Gabbay S. Abramsky and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, pages 1–116. Oxford
University Uress, New York, 1992.

7. M. Marz. An algebraic view on recursive types. Applied Categorical Structures,
7(12):147–157, 1999.

8. R. Milner. A Theory of Type Polimorphism in Programming. Journal of Computer
and System Sciences, 17:348–375, 1978.

9. R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press,
1990.

10. D. Scott. Some philosophical issues concerning theories of combinators. In
C. Böhm, editor, Lambda calculus and computer science theory, volume 37 of Lec-
ture Notes in Computer Science, pages 346–366. Springer-Verlag, 1975.

11. R. Statman. Recursive types and the subject reduction theorem. Technical Report
94–164, Carnegie Mellon University, 1994.

12. B. Pierce V. Gapeyev, M. Levin. Recursive subtyping revealed. In Proceedings
fifth ACM SIGPLAN International Conference on Functional Programming, pages
221–232. ACM press, 2000.

	Introduction
	Type Structures and Type Constraints
	$lambda $-Calculi with Recursive Types
	Some Properties of Simultaneous Recursions
	Finding Types

