
Synchronized Tree Languages Revisited
and New Applications

Valérie Gouranton1, Pierre Réty1, and Helmut Seidl2

1 LIFO, Université d’Orléans, France.
{gouranto,rety}@lifo.univ-orleans.fr

2 Dept. of Computer Science, University of Trier, Germany.
seidl@psi.uni-trier.de

Abstract. We present a new formulation for tree-tuple synchronized
languages, much simpler than the existing one. This new formulation
allows us to prove stronger structural results. As a consequence, syn-
chronized languages give rise to new applications :
– to rewriting : given tree languages L1 (synchronized), L2 (regular),

Rel(L1) ⊆ L2 is decidable for several rewrite-like relations Rel.
– to concurrency : we prove decidability of the logic EF for a process

calculus allowing some bounded form of communication. Conse-
quently, the absence of deadlocks is decidable.

Keywords: tree-tuple language, rewriting, concurrency.

1 Introduction

In the field of tree1 languages, let us consider the so-called tree-tuple synchronized
languages, i.e. the languages generated by Tree-Tuple Synchronized Grammars
(TTSG for short). TTSG’s have been introduced to solve some equational uni-
fication [4,5] and disunification [6] problems. They have next been applied to
logic program validation [8], and one-step rewriting theory [7]. Before going on,
it is necessary to recall what a TTSG is, using an example. The following TTSG
contains four packs of synchronized productions :{

X ⇒ f(X, X ′)
Y ⇒ f(Y, Y ′)

{
X ⇒ b
Y ⇒ b

{
X ′ ⇒ f(X, X ′)
Y ′ ⇒ f(Y, Y ′)

{
X ′ ⇒ b
Y ′ ⇒ b

The first pack means that if X is derived into f(X, X ′), then Y must be derived
into f(Y, Y ′) at the same time. Therefore if X appears in a given tree and Y
does not, the tree cannot be derived by the first pack. If the axiom is the pair
of non-terminals (X, Y), a possible derivation is :

(X, Y) ⇒ (f(X, X ′), f(Y, Y ′)) ⇒ (f(X, f(X, X ′)), f(Y, f(Y, Y ′)))

Now there is an ambiguity : which X should be synchronized (derived at the
same time) with which Y ? To remove this ambiguity, a control (an integer) is
attached to each non-terminal, along the derivation, and is increased to a new
1 Trees are first-order terms.

F. Honsell and M. Miculan (Eds.): FOSSACS 2001, LNCS 2030, pp. 214–229, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Synchronized Tree Languages Revisited and New Applications 215

value whenever a pack of productions is applied. And the rule is : only non-ter-
minals having the same control can be derived at the same time. Thus the above
derivation is actually (For readability, control is written as non-terminal index) :

(X0, Y0) ⇒ (f(X1, X
′
1), f(Y1, Y

′
1)) ⇒ (f(X1, f(X2, X

′
2)), f(Y1, f(Y2, Y

′
2)))

Now, an X and a Y can be derived at the same time only if they appear at
identical positions in the two trees. Thus, this grammar generates the pairs of
identical terms.

To get something interesting and more general for applications, control is
indispensable. Unfortunately, this simple control is not enough when computing
the natural join of two tree-tuple synchronized languages : we get a TTSG that
needs a more complicated control (pairs of integers). Worse, when computing
several joins incrementally, each step needs a control more complicated than the
previous one (tuples of integers, see [5] for details). In this paper :

– We present a simple formalism which essentially is equivalent to TTSG’s
of level 1 (i.e., those with an integer as control) but elegantly circumvents
the use of controls. The idea is that in the new formalism, a non-terminal
will represent tuples of synchronizable2 trees (instead of single trees) from
which we will extract components, as needed. This new grammar formalism
is given in the form of constraint systems for which we consider their least
fix-point solutions. In other words, we adopt the bottom-up point of view
instead of the top-down one3.

– Instead of formally proving the equivalence of the two formalisms, we pre-
fer to present the vastly simplified proofs of existing results using the new
formalism, and also take advantage of its simplicity by proving new results.
In particular, we show closure by union and cartesian product (existing re-
sults), as well as closure by projection (new) and, as our key technical result,
also closure under join (new4). Moreover, we present a linear time emptiness
for constraints (an exponential-time pumping technique, very complicated
because of control, was used for TTSG’s), and a rather efficient membership
test (comparable to [12] but much simpler).

– Thanks to the new results, we get new applications :
• to rewriting : given tree languages L1 (synchronized, then non-necessarily

regular), L2 (regular), we prove that Rel(L1) ⊆ L2 is decidable for one-
step, parallel, one-pass, one-pass root-started rewritings.

• to concurrency : we extend the work of [10] on PA-processes by intro-
ducing bounded communications. We get a new concurrency formalism
for which we show that the whole logic EF is decidable. In particular,
we are able to verify that a given process is deadlock free.

2 I.e. that had identical control values.
3 Due to the essential equivalence, the reader may still also interpret constraint systems

as grammars.
4 This amounts to show that TTSG’s of level n > 1 are actually useless.

216 V. Gouranton, P. Réty, and H. Seidl

2 Constraint Systems for Tuple Synchronized Languages

Example 2.1. This is the example given in the introduction, but now expressed
with a constraint system. In the signature Σ = {f\2, b\0} let Lid = {(t, t) | t ∈
TΣ} be the set of pairs of identical terms. Lid can be defined by the following
grammar, given in the form of a constraint system:

Xid ⊇ (b, b)
Xid ⊇ (f(11, 21), f(12, 22)) (Xid, Xid)

where 11, 21, 12, 22 abbreviate pairs (for readability). For example 21 means
(2, 1), which denotes the first component of the second argument (the second
Xid). Note that since 11 and 12 come from the same Xid, they represent two
identical terms, in other words they are linked (synchronized), whereas for ex-
ample 11 and 21 are independent.

Example 2.2. Now if we consider the slightly different constraint system :

Xsym ⊇ (b, b)
Xsym ⊇ (f(11, 21), f(22, 12)) (Xsym, Xsym)

we get the set Lsym = {(t, tsym) | tsym is the symmetric of t}.

Example 2.3. In the signature Σ = {s\1, b\0} let Ldble = {(sn(b), s2n(b))}. It
can be defined by the constraint system :

Xdble ⊇ (b, b)
Xdble ⊇ (s(11), s(s(12))) Xdble

General Formalization

Assume we are given a (universal) index set N for tuple components. For I ⊆ N
and any set M , the set of I-tuples a : I → M is denoted by M I . Often, we
also write a = (ai)i∈I provided a(i) = ai which for I = {1, . . . , k} ⊆ N, is also
written as a = (a1, . . . , ak).

Different tree-tuple languages may refer to tuples of different length, or, to
different index sets. Our constraint variables represent tree-tuple languages. Con-
sequently, they have to be equipped with the intended index set. Such an assign-
ment is called classification. Accordingly, a classified set of tuple variables (over
N) is a pair (X , ρ) where ρ : X → 2N assigns to each variable X a subset of
indices. This subset is called the class of X. For convenience and whenever ρ is
understood, we omit ρ and denote the classified set (X , ρ) by X . The maximal
cardinality of the classes in X is also called the width of X . In particular, in
example 2.1, N = {1, 2}, X = {Xid}, and ρ(Xid) = {1, 2}. Thus, the width of
X is 2.

A constraint system for tree-tuple languages consists of a classified set (X , ρ)
of constraint variables, together with a set E of inequations of the form

X ⊇ 2(X1, . . . , Xk) (1)

Synchronized Tree Languages Revisited and New Applications 217

where X, X1, . . . , Xk ∈ X and 2 is an operator mapping the concatenation of
tuples for the variables Xi to tuples for X. More precisely, let

J = {(i, x) | 1 ≤ i ≤ k, x ∈ ρ(Xi)} (2)

denote the disjoint union of the index sets corresponding to the variables Xi (in
example 2.1, J = {(1, 1), (1, 2), (2, 1), (2, 2)} abbreviated into {11, 12, 21, 22}).
Then 2 denotes a mapping T J

Σ → T
ρ(X)
Σ . Each component of this mapping

is specified through a tree expression t which may access the components of
the argument tuple and apply constructors from signature Σ. Thus, t can be
represented as an element of TΣ(J) where TΣ(J) denotes all trees over Σ which
additionally may contain nullary symbols from the index set J .

Consider, e.g., the second constraint in example 2.1. There, the first compo-
nent of the operator is given by t = f(11, 21).

The mapping induced by such a tree t then is defined by

t(sj)j∈J = t{j 7→ sj}j∈J

for every (sj)j∈J ∈ T J
Σ . Accordingly, 2 is given by a tuple

2 ∈ TΣ(J)ρ(X)

Let us collect a set of useful special forms of constraint systems. The constraint
(1) is called

– non-copying iff no index j ∈ J occurs twice in 2;
– irredundant iff 2 refers to each argument at least once, i.e., 2 contains at

least one occurrence of some (j, xj) for each j;
– empty iff 2 contains no constructor application, i.e., 2x ∈ J for all x ∈ ρ(X);
– Greibach iff each component 2x either is contained in J or is a single con-

structor application a(j1, . . . , jn), a ∈ Σ, j1, . . . , jn ∈ J ;
– regular5 iff each component of 2 is a single constructor application of the

form 2x = a((1, x), . . . , (n, x)) for each x ∈ ρ(X).

The whole constraint system is called non-copying, (irredundant, non-empty,
Greibach, regular) iff each constraint in E is so.

For example, the constraint systems that define Lid and Lsym are non-
copying, irredundant, and Greibach. Moreover Lid is regular. On the other hand,
Ldble is not Greibach. It is always possible to write any constraint system in
Greibach form. Thus the Greibach form of Ldble is :

Xdble ⊇ (b, b)
Xdble ⊇ (s(11), s(12)) Y

Y ⊇ (11, s(12)) Xdble

A variable assignment is a mapping σ assigning to each variable X ∈ X a
subset of T

ρ(X)
Σ (i.e. a set of tuples of ground terms). Variable assignment σ

satisfies the constraint (1) iff

σ(X) ⊇ {2(t1, . . . , tk) | ti ∈ σ(Xi)} (3)
5 This corresponds to the notion of regular relation, i.e. the tree language over the

product-alphabet obtained by overlapping the tuple components is regular.

218 V. Gouranton, P. Réty, and H. Seidl

Note here that the 2-operator is applied, in fact, to the cartesian product of
the argument sets σ(Xi). In particular, the tuples inside the argument sets are
kept “synchronized” while tuples from different argument sets may be arbitrarily
combined.

The variable assignment σ is a solution of the constraint system iff it satisfies
all constraints in the system. Since, the operator application in (3) is monotonic,
even continuous (w.r.t. set inclusion of tuple languages) we conclude that each
constraint system has a unique least solution.

3 Properties

3.1 Deciding Emptiness

The fix-point characterization of languages defined by tuple language constraint
systems, allows us immediately to derive a polynomial emptiness test. In order
to do that, we first observe that we can always remove from a constraint X ⊇
2 (X1, . . . , Xk) all arguments Xj which do not contribute to the components of
X. Consequently, we have:

Proposition 3.1. For every constraint system C we can construct in linear time
a irredundant constraint system C′ such that C and C′ have the same least solu-
tion.

For irredundant systems, however, emptiness can be decided along the same
lines as for tree automata. For the constraint system C = (X , E) we (conceptu-
ally) introduce a new ranked alphabet ∆ which contains a new letter ar for each
constraint r in E where ar is of rank k provided the right-hand of r refers to k
variables. Then the uninterpreted regular constraint system C0 = (X0, E0) of C
is obtained as follows:

– X0 is obtained from X by forgetting the classification.
– E0 is obtained from E by replacing each constraint r of the form X ⊇

2 (X1, . . . , Xk) with the constraint X ⊇ ar (X1, . . . , Xk).

Theorem 3.2. Let C denote a constraint system and C0 the uninterpreted regu-
lar constraint system of C. Furthermore, let σ and σ0 denote the least solutions
of C and C0, respectively. Then the following holds:

1. If C is irredundant, then for every X ∈ X , σ X 6= ∅ iff σ0 X 6= ∅.
2. The set {X ∈ X | σ X 6= ∅} can be computed in time linear in the size of C.

Indeed, theorem 3.2 does not come as a surprise. Taking a closer look at our
definition of tuple languages, reveals that these can be viewed as polynomial
systems over a specific algebra of graphs (cf. [2]).

Synchronized Tree Languages Revisited and New Applications 219

3.2 Basic Closure Properties

We are actually interested in non-copying constraint systems, which are enough
to formalize tree-tuple synchronized languages, because there is no copying in
TTSG’s. Let L denote the class of languages defined by non-copying constraint
systems. We now collect some basic closure properties of languages in L. Obvi-
ously, L is closed under union and cartesian product.

Proposition 3.3. Assume that L1, L2 ∈ L are tree-tuple languages of ranks I1
and I2, respectively. Then we have:

– If I1 = I2, then L1 ∪ L2 is in L, and
– If I1 ∩ I2 = ∅, then L1 × L2 ∈ L where for I = I1 ∪ I2, the cartesian product

L1 × L2 is defined as the set of all I-tuples

L1 × L2 = {t ∈ T I
Σ | t|Ii ∈ Li}

The class of tree-tuple languages defined through constraint systems is not
closed under intersection – even with a regular relation. The reason intuitively is
that through intersection, we can construct the set of all complete binary trees
which cannot be defined by any constraint system as considered here.

Finally, let us remark that L is closed under projections.

Proposition 3.4. Assume that L ⊆ T I
Σ and A ⊆ I. then also the projection

πA(L) of L onto A is in L where the projection πA(L) is defined by

πA(L) = {t|A | t ∈ L}
Although not stated explicitly in the propositions 3.3 and 3.4, the construc-

tions for union and cartesian product can be implemented in linear lime. The
same clearly also holds for projection.

3.3 Join and Membership

Another operation on languages of tree-tuples is the join operation. Assume that
I1, I2 are two index sets with I1 ∩ I2 = {x}. The join of two languages Li ⊆ T Ii

Σ
is defined by

L1 1 L2 = {t ∈ T I
Σ | t|Ii ∈ Li}

where I = I1∪I2. In case that the index sets are disjoint, we may select elements
x1 ∈ I1 and x2 ∈ I2 which are to be identified. In order to do so, we construct
the cartesian product of the two languages, select all tuples t where tx1 = tx2

and then project onto the set I = I1 ∪ I2\{x2}. This operation is denoted by
L1 1x1,x2 L2. Note that this operation can also be implemented by renaming
the component x2 of the language L2 to x1 and then apply the ordinary join.
In general, the family L will not be closed under joins. An exception is the case
where I1 = {x} and L1 is a regular set of trees. Then L1 1 L2 = {t ∈ L2 | tx ∈
L1}, and we find:

220 V. Gouranton, P. Réty, and H. Seidl

Proposition 3.5. If L1 ⊆ T
{x}
Σ is regular, and L ⊆ T I

Σ is in L with x ∈ I,
then L′ = L1 1 L is in L as well. Given a finite tree automaton of size m for
L1 and a constraint system of size n for L using a classified set of variables of
width r, the construction of a constraint system for L′ can be performed in time
O(n · (m + 1)r).

Prop. 3.5 can be used to compute the intersection of cartesian products of
regular sets with languages from L.

Proposition 3.6. Assume I = {x1, . . . , xk} for pairwise different indices xi,
Li ⊆ T

{xi}
Σ , i = 1, . . . , k, are regular sets, and L ⊆ T I

Σ is in L. Then the inter-
section L′ = (L1 × . . . × Lk) ∩ L is in L as well. Given finite tree automata of
joint size m for the Li and a constraint system of size n for L using a classified
set of variables of width r, the construction of a constraint system for L′ can be
performed in time O(n · (m + 1)r).

Indeed, prop. 3.6 follows directly from prop. 3.5, since

L′ = L1 1 (L2 1 . . . (Lk 1 L) . . .)

In order to derive the given complexity bound we have to recall that each com-
ponent of a class on the right-hand side can be used at most once on the left
hand side – implying that, when keeping track of the states of components,
we only have to track the state of one of the r automata for each component.
Nonetheless, as the width of the set of variables of the constraint system for
L occurs in the exponent of the complexity estimation, we conclude that the
corresponding construction will only be feasible for “small” index sets I. Sadly
enough, the complexity estimation cannot be easily improved. In order to see
this, recall that there is a simple constraint system for the language

Idk = {(t, . . . , t) | t ∈ TΣ} ⊆ T k
Σ

The intersection of Idk with the cartesian product L1 × . . . × Lk of regular tree
languages Li is nonempty iff L1 ∩ . . . ∩ Lk 6= ∅. Deciding the emptiness of the
intersection of a sequence of regular tree languages, however, is well-known to be
complete for DEXPTIME [13]. Now since emptiness for our constraint systems
can be decided in linear time, we have succeeded in reducing a DEXPTIME
complete problem to our intersection construction.

Prop. 3.6, however, offers a conceptually simple method for solving the mem-
bership problem. Since singleton sets of trees are trivially regular, we obtain:

Theorem 3.7. Given a language L ⊆ T I
Σ in L and a tree-tuple t ∈ T I

Σ, it can
be decided whether or not t ∈ L. Assuming that L is given through a constraint
system of size n using a classified set of variables of width r, membership of t in
L can be decided in time O(n · (|t| + 1)r).

Let us now return to prop. 3.5. The basic idea of the construction used in the
proof there consists in the observation that, while building up tuples according
to a constraint system, we very well may keep track of the states of a finite tree
automaton on all components of classes that contribute to a given component.

Synchronized Tree Languages Revisited and New Applications 221

Indeed, this idea can be generalized. A component x of a class X will be
considered as free if its values trees are generated by the constraint system in a
“regular way”. By this we mean that no use is ever made of several components
from the same variable, i.e., “internal synchronization”.

Example 3.8. Consider the constraint system :

X ⊇ (a, f(11, 12)) Xid

where Xid is defined as previously. In X, the second component is not free, since
both arguments of f come from the same variable implying that their values
are potentially inter-related and indeed, the projection of X onto its second
argument is not regular. On the other hand, the first component is trivially free.
Now let us add the constraint :

Y ⊇ s(12) X

Then the component of Y is not free either because the second component of X
is used to define Y which is not free.

In order to make this notion formal, assume that we are given a constraint
system (X , E) which is Greibach and non-copying. The relation free ⊂ N × X is
given as the maximal relation F such that for each (x, X) ∈ F , x ∈ ρ(X) and
for all constraints X ⊇ 2(X1, . . . , Xk) in E and t = 2x the following holds:

1. If (i, y) ∈ I occurs in t then (y, Xi) ∈ F ;
2. If (i1, y1) 6= (i2, y2) occur in t then i1 6= i2.

Since properties (1) and (2) are preserved by unions, free is well-defined. If
(x, X) ∈ free, we also say that component x is free in X. The second property
above then essentially implies that there are no “internal synchronizations” in
free components.

We call a component x free w.r.t. a language L (from L) if there is a constraint
system (X , E) with least solution σ such that L = σ X for some X ∈ X where x
is free in X.

Proposition 3.9. If x is free in the language L (from L), then the projection
π{x}(L) of L onto the component x is a regular tree language.

Here is the main result of this section.

Theorem 3.10. Assume Li ⊆ T Ii

Σ , i = 1, 2, are in L where I1 and I2 are
disjoint. Then the join L1 1x1,x2 L2 is in L whenever x1 is free in L1. Moreover
if x3 is free in L2, then x3 is still free in L1 1x1,x2 L2.

A proof of this theorem can be found in the full version [3].

222 V. Gouranton, P. Réty, and H. Seidl

4 Application to Rewriting

For a binary relation on terms Rel and two regular tree languages L1, L2, the
decidability question Rel(L1) ⊆ L2 has already been studied in [14] assuming
Rel is a rewrite-like relation. Now, if Rel ∈ L (i.e. is defined by a non-copying
constraint system), we also get a decidability result (the proof is in [3]).

Proposition 4.1. If L1, Rel ∈ L and L2 is regular, then

L1 is regular
or the first component of Rel is free6

}
=⇒ Rel(L1) ⊆ L2 is decidable

Note that this result can be used incrementally to compose relations. If the first
component of each relation Rel1, . . . , Reln is free, then Rel1(. (Reln(L1) . . .)
⊆ L2 is still decidable.

Concerning rewrite-like relations, we can easily encode one-step rewriting,
parallel rewriting by non-copying constraint systems (see the full version [3]).
If the rewrite system is entirely linear we can also encode one-pass rewriting
and one-pass root-started rewriting. Thus, if L1 is regular, we get the same
decidability results as in [14] (or weaker because of linearity). On the other
hand, if L1 is not regular, for example if L1 is composed of the instances of a
non-linear term, we get new results, assuming however left-linearity for one-step
rewriting and parallel rewriting, to ensure the freeness of the first component of
Rel.

Moreover, assuming left-linearity, we can compose n times the relation one-
or-zero-step rewriting with itself, and we get the decidability of ≤n−→ (L1) ⊆ L2,

where ≤n−→ is the rewrite relation in no more than n steps.

5 Application to Concurrency

We introduce a new concurrency formalism, the Bounded-Communication Pro-
cess Calculus (BCPC). The idea is : when running two processes in parallel, they
cannot communicate to each other if either (or both) has performed too many
statements (actions), because it lasts too long. In other words, communication
channels are not kept indefinitely, and nothing new is tried after the time limit.
We think that this formalism could apply to check some properties in commu-
nication protocols.

Since everything is assumed to be time-limited, and to simplify the for-
malization, we consider that process derivation rules are folded into bigger
ones, that simulate the time limit. For example, given the derivation rules
{x

a→ y‖z, y
b→ t} and considering that communication is not allowed beyond

two actions, the derivation rules are replaced by x
c→ t‖z where c is a new action

representing the sequence a.b. Thus, the process x‖t′ derives in one step, with
6 I.e. the projection of Rel on the first component is a regular language.

Synchronized Tree Languages Revisited and New Applications 223

action c, into (t‖z)‖t′, and t‖z will not be allowed to communicate with t′ be-
cause we consider that applying one rule means that the time limit is reached,
i.e. the new subterm created by the rule cannot communicate with the rest of
the world anymore. Obviously, the user may fold the rules as he likes, and may
for instance consider that all actions do not have the same durations.

Starting from a process name x, we are interested in testing properties on
processes derived from x. Properties are expressed by means of the temporal
logic CTL on an infinite structure7, restricted to operators EF and EX, and
we show that the model-checking problem is decidable. As a consequence, the
absence of deadlocks is decidable.

To prove this, we express the transitive closure →∗ of the process-derivation
relation by a constraint system8, and apply constraint system properties. For
readability, we first express →∗ for the PA formalism (i.e. without communica-
tion), which we then extend to BCPC by introducing communication (also called
synchronization).

5.1 PA

PA introduced in [1] is a process algebra which permits non-determinism, se-
quential and parallel compositions, and recursion.

Syntax and semantics. Act is a set of action names, Act = {a, b, c, . . .}. Const
is a finite set of process constants (or process names), Const = {x, y, z, . . .}. T
is the set {t1, t2, . . .} of PA-terms defined by the following equation :

t1, t2 ::= 0 | x | t1 ‖ t2 | t1 . t2

where x ∈ Const. The interpretation of the syntax expressions is the following : 0
represents the process which performs no events, t1 ‖ t2 the parallel composition,
and t1 . t2 represents the sequential composition.

A PA declaration is a finite family of recursive process rewrite rules :

∆ = {xi
aj

i→ tji | xi ∈ Const, tji ∈ T, i = 1, . . . , n, j = 1, . . . , ki}
We define ∆(x) = {t | (x a→ t) ∈ ∆}. ∆(x) = ∅ denotes that there is no rule
(x a→ t) belonging to ∆.

A family ∆ of process rewrite rules determines a labeled transition relation
→∆⊆ T × Act × T . We omit the ∆ and we note t

a→ t′ for (t, a, t′) ∈→ with
t, t′ ∈ T and a ∈ Act. The semantics is defined in Figure 1 by a Structural
Operational Semantics [11]. In the parallel composition ‖, the two processes t1
and t2 are evaluated independently. In the sequential composition t1 . t2, t1
is first computed, and then t2 is evaluated when the process t1 is terminated.
Const(t) denotes the set of process constants occurring in term t. The predicate
Finished represents the information of process termination. A term t is finished
when it contains no process constants : Finished(t) = (Const(t) = ∅).
7 States are process terms.
8 For concision, in this section constraint system stands for non-copying constraint

system.

224 V. Gouranton, P. Réty, and H. Seidl

x
a→ t if (x a→ t) ∈ ∆

t1
a→ t′

1

t1 ‖ t2
a→ t′

1 ‖ t2

t2
a→ t′

2

t1 ‖ t2
a→ t1 ‖ t′

2

t1
a→ t′

1

t1 . t2
a→ t′

1 . t2

t2
a→ t′

2

t1 . t2
a→ t1 . t′

2
if Finished(t1)

Fig. 1. The semantics

Constraint system. We use the standard notation →∗ for transitive closure
of the rewrite relation (labels are omitted). The set Pre∗(t) denotes the iterated
predecessors of the term t : Pre∗(t) = {t′ ∈ T | t′ ∗→ t} and the set Post∗(t)
denotes the iterated successors of the term t : Post∗(t) = {t′ ∈ T | t

∗→ t′}.
The constraint system G (axiom A) for →∗ is presented9 in Figure 2. We

note L(N) the language generated from the non-terminal N . L(A) represents
the language of pairs (t, t′) where t ∈ T and t′ ∈ Post∗(t). In this definition,
we use Sub(∆) = {s | s is a subterm of t, t ∈ ∆(x), x ∈ Const}. We use the
non-terminal At to generate Post∗(t). For each x ∈ Const, the non-terminal
X is introduced to define Post+(x). The non-terminals F , FX and Ft play the
same part as A, X and At except that they express only terminated processes
(without constants).

A ⊇ (0, 0)
A ⊇ (x, x)
A ⊇ (x, X)

}
∀x ∈ Const

A ⊇ (11 ‖ 21, 12 ‖ 22)(A, A)
A ⊇ (11 . 21, 12 . 22)(A, Id)
A ⊇ (11 . 21, 12 . 22)(F, A)

X ⊇ At ∀t : (x a→ t) ∈ ∆
A0 ⊇ 0
Ax ⊇ x
Ax ⊇ X

}
∀x ∈ Const

At1‖t2 ⊇ At1 ‖ At2 ∀ t1 ‖ t2 ∈ Sub(∆)
At1 . t2 ⊇ At1 . t2
At1 . t2 ⊇ Ft1 . At2

}
∀ t1 . t2 ∈ Sub(∆)

F ⊇ (0, 0)
F ⊇ (x, FX) ∀x ∈ Const
F ⊇ (11 ‖ 21, 12 ‖ 22)(F, F) ∀ t1 ‖ t2 ∈ Sub(∆)
F ⊇ (11 . 21, 12 . 22)(F, F) ∀ t1 . t2 ∈ Sub(∆)

FX ⊇ Ft ∀t : (x a→ t) ∈ ∆
F0 ⊇ 0
Fx ⊇ FX

Ft1‖t2 ⊇ Ft1 ‖ Ft2 ∀ t1 ‖ t2 ∈ Sub(∆)
Ft1 . t2 ⊇ Ft1 . Ft2 ∀ t1 . t2 ∈ Sub(∆)

Fig. 2. The constraint system G for →∗

9 Shortened notations are used, like A ⊇ (x, X) which means A ⊇ (x, 11)X.

Synchronized Tree Languages Revisited and New Applications 225

Theorem 5.1. G generates exactly →∗ (i.e. L(A) = {(t, t′) | t →∗ t′}). More-
over G is regular.

As a consequence, we get the regularity of →∗, already proved in [9]. The proof
of this theorem can be achieved using the following lemma :
Lemma 5.2.

L(F) = {(t, t′) | t →∗ t′ ∧ Finished(t′)}
L(X) = {t′ | x →+ t′} L(FX) = {t′ | x →∗ t′ ∧ Finished(t′)}
L(At) = {t′ | t →∗ t′} = Post∗(t) L(Ft) = {t′ | t →∗ t′ ∧ Finished(t′)}

The proof can be made by classical induction or using the results of [10,9].
In [10], tree automata techniques are used to compute Post∗(t) and Pre∗(t).
Two families of tree languages are defined, as the least solution of a recursive
equation set. They define L′

t = Post∗(t) and L′′
t is the restriction of L′

t to
terminated processes. It is clear that we have L(At) = L′

t and L(Ft) = L′′
t .

The non-terminal A is represented by [I, R] and F by [I ′, RT]. In [9], automata
for tree languages are replaced by automata for tree relations. A notion of cost
is introduced. A regular tree constraint system for Post∗(X) is defined. F is
represented by I and A by F .

5.2 BCPC

Now Act = {a, b, c, . . . , a, b, c, . . .}, ∆ = ∆1 ∪ ∆2 where ∆2 is a set of synchro-
nized rules :

∆1 = {xi
aj

i→ tji | xi ∈ Const, tji ∈ T, i = 1, . . . , n, j = 1, . . . , ki}

∆2 = {

yi

aj
i→ tji,1

zi
aj

i→ tji,2

| yi, zi ∈ Const, tji,1, t
j
i,2 ∈ T,

i = 1, . . . , n, j = 1, . . . , pi
}

and

∆1(x) = {t | (x a→ t) ∈ ∆1} ∆2(y, z) = {(t1, t2) |
{

y
a→ t1

z
a→ t2

∈ ∆2}

A synchronization is only allowed within a rule right-hand-side. In this paper,
to avoid a conflict with the semantics of sequential composition, we assume
that a synchronization is only allowed within a right-hand-side subterm that
contains no sequential composition. We hope that in further work, by refining
the semantics of synchronized process-derivation as well as the constraint system
for →∗, we will manage to remove this restriction.

Let Rhs be the set of the greatest10 subterms of right-hand-sides of rules in
∆ that contain no sequential composition. The semantics of →∆ is defined by
Figure 1 (where a may also be replaced by ε) and :

s
ε→ s[y/t1, z/t2] if

{
y

a→ t1

z
a→ t2

∈ ∆2 and s ∈ Rhs

where s[y/t1, z/t2] is obtained by replacing y by t1 and z by t2 in s.
10 To avoid redundancies.

226 V. Gouranton, P. Réty, and H. Seidl

Example. For readability we first present an example. Consider

∆1 = {x
a→ y‖z, z

a→ y2, y1
a→ 0}, ∆2 =

{
y

a→ (0 . y1)
z

a→ 0

Then Rhs = {y‖z}. The constraint system G′ for →∗ is presented in Fig-
ure 3. G′ also includes the rules of Figure 2. The non-terminal Y Z permits a
synchronization of y and z.

Theorem 5.3. G′ generates exactly →∗.

Note that G′ is not regular because constraints A ⊇ . . . and F ⊇ . . . introduce
internal synchronizations. The proof comes from Lemma 5.2 and Lemma 5.4.
Lemma 5.4.

L(Y Z) = {(t′1, t
′
2) | y ‖ z →+ t′1 ‖ t′2}

L(HY Z) = {(t′1, t
′
2) | y ‖ z →∗ t′1 ‖ t′2 ∧ Finished(t′1) ∧ Finished(t′2)}

L(Byz)={(t′1, t
′
2) | y ‖ z →∗ t′1 ‖ t′2}, L(Bt1t2)={(t′1, t

′
2) | t1 →∗ t′1 ∧ t2 →∗ t′2}

The proof can be made by induction on the length of →∗.

A ⊇ (y ‖ z, 11 ‖ 12)Y Z

Y Z ⊇ Bt1t2 ∀t1, t2 :

{
y

a→ t1

z
a→ t2

∈ ∆2

Bt1t2 ⊇ (At1 , At2)

F ⊇ (y ‖ z, 11 ‖ 12)HY Z

HY Z ⊇ Ht1t2 ∀t1, t2 :

{
y

a→ t1

z
a→ t2

∈ ∆2

Ht1t2 ⊇ (Ft1 , Ft2)
Ay‖z ⊇ (11 ‖ 12)Y Z

Fy‖z ⊇ (11 ‖ 12)HY Z

Fig. 3. The additional constraints of G′ for →∗

The following process derivations :

x → y ‖ z → (0 . y1) ‖ 0 → (0 . 0) ‖ 0 x → y ‖ z → y ‖ y2

are expressed by G′ in the following way :

A ⊇ (x, x) A ⊇ (x, X) X ⊇ Ay‖z because (x a→ y ‖ z) ∈ ∆1
Ay‖z ⊇ Ay ‖ Az Ay ⊇ y Az ⊇ z Az ⊇ Z

Z ⊇ Ay2 because (z a→ y2) ∈ ∆1 Ay2 ⊇ y2

Synchronized Tree Languages Revisited and New Applications 227

So, we can prove : A ⊇ (x, x), (x, y ‖ z), (x, y ‖ y2)

Ay‖z ⊇ (11 ‖ 12)Y Z Y Z ⊇ B0.y1 0 because

{
y

a→ 0 . y1

z
a→ 0

∈ ∆2

B0.y1 0 ⊇ (A0.y1 , A0) A0.y1 ⊇ A0 . y1 A0.y1 ⊇ F0 . Ay1

A0 ⊇ 0 F0 ⊇ 0 Ay1 ⊇ y1 Ay1 ⊇ Y1

Y1 ⊇ 0 because (y1
a→ 0) ∈ ∆1

So, we can prove : A ⊇ (x, 0 . y1 ‖ 0), (x, 0 . 0 ‖ 0)

General case. See the full version [3].

Model-checking. The model-checking problem solved in [10] for PA is still
decidable for BCPC.

We consider a set Prop = {P1, P2, . . .} of atomic propositions. For P ∈ Prop,
let Mod(P) denote the set of PA-processes for which P holds. Mod(P) is always
supposed to be a regular tree-language.

The EF-logic has the following syntax :

ϕ ::= P | ¬ϕ | ϕ ∧ ϕ′ | EXϕ | EFϕ

and semantics :
t |= P ⇔ t ∈ Mod(P)

t |= ¬ϕ ⇔ t 6|= ϕ
t |= ϕ ∧ ϕ′ ⇔ t |= ϕ and t |= ϕ′

t |= EXϕ ⇔ t′ |= ϕ for some t → t′

t |= EFϕ ⇔ t′ |= ϕ for some t →∗ t′

Definition 5.5. The model-checking problem consists in testing whether t |= ϕ
for given t and ϕ.

If we define Mod(ϕ) = {s ∈ T | s |= ϕ}, the model-checking problem for s and
ϕ amounts to test whether t ∈ Mod(ϕ). Trivially, Mod satisfies :

Mod(¬ϕ) = T − Mod(ϕ)
Mod(ϕ ∧ ϕ′) = Mod(ϕ) ∩ Mod(ϕ′)

Mod(EXϕ) = Pre(Mod(ϕ))
Mod(EFϕ) = Pre∗(Mod(ϕ))

Theorem 5.6. For every EF-formula ϕ, Mod(ϕ) is a regular language.

Proof. See the full version [3].

This result may seem surprising, because it uses →∗ as an intermediate language,
which is a non-regular synchronized language. It comes from the fact that the
first component of G′ is free, i.e. the projection of →∗ on the first component is
regular.

So, and thanks to membership test, the model-checking problem is decidable.
As a consequence, the absence of deadlocks is decidable. Indeed, starting from a
process t, there is a deadlock iff there exists an iterated successor t′ of t s.t. t′ has
no successors and t′ is not a finished process. Thus, there is no deadlocks iff t |=
¬EF(¬EX(True) ∧ ¬Finished), where Mod(True) = T and Mod(Finished) =
{t ∈ T | Finished(t)} are regular languages.

228 V. Gouranton, P. Réty, and H. Seidl

6 Further Work

Synchronized languages defined by constraint systems are not closed by intersec-
tion, and therefore not closed by complement11. In further work, we will define a
subclass closed by intersection, and that preserves all properties of synchronized
languages. This should give rise to further applications.

BCPC allows rendez-vous of only two processes. This can be trivially ex-
tended to finitely many processes, since we can handle tuples of any size. Re-
moving the restriction on Rhs is more difficult, but we hope for it. On the other
hand, we can test properties on processes, not on actions. However, it should be
possible to take actions into account by using triple languages for a→ and α→∗

.

References

1. J.C.M. Baeten and W.P. Weijland. Process algebra. In Cambridge Tracts in
Theoretical Computer Science, volume 18, 1990.

2. B. Courcelle. The Monadic Second-Order Logic of Graphs I, Recognizable Sets of
Finite Graphs. In Inf. Comp., volume 85, pages 12–75, 1990.

3. V. Gouranton, P. Réty, and H. Seidl. Synchronized Tree Languages Revisited
and New Applications. Research Report 2000-16, LIFO, 2000. http://www.univ-
orleans.fr/SCIENCES/LIFO/Members/rety/publications.html.

4. S. Limet and P. Réty. E-Unification by Means of Tree Tuple Synchronized Gram-
mars. In Proceedings of 6th Colloquium on Trees in Algebra and Programming,
volume 1214 of LNCS, pages 429–440. Springer-Verlag, 1997.

5. S. Limet and P. Réty. E-Unification by Means of Tree Tuple Synchronized Gram-
mars. Discrete Mathematics and Theoritical Computer Science
(http://dmtcs.loria.fr/), 1:69–98, 1997.

6. S. Limet and P. Réty. Solving Disequations modulo some Class of Rewrite Sys-
tems. In Proceedings of 9th Conference on Rewriting Techniques and Applications,
Tsukuba (Japon), volume 1379 of LNCS, pages 121–135. Springer-Verlag, 1998.

7. S. Limet and P. Réty. A New Result about the Decidability of the Existential One-
step Rewriting Theory. In Proceedings of 10th Conference on Rewriting Techniques
and Applications, Trento (Italy), volume 1631 of LNCS. Springer-Verlag, 1999.

8. S. Limet and F. Saubion. On partial validation of logic programs. In M. Johnson,
editor, proc of the 6th Conf. on Algebraic Methodology and Software Technology,
Sydney (Australia), volume 1349 of LNCS, pages 365–379. Springer Verlag, 1997.

9. D. Lugiez and P. Schnoebelen. Decidable firt-order transition logics for PA-
processes. In Springer, editor, ICALP, LNCS, Geneva, Switzerland, July 2000.

10. D. Lugiez and P. Schnoebelen. The regular viewpoint on PA-processes. Theoretical
Computer Science, 2000.

11. G.D. Plotkin. A structural approach of operational semantics. Technical Report
FN-19, DAIMI, Aarhus University, Denmark, 1981.

12. F. Saubion and I. Stéphan. On Implementation of Tree Synchronized Languages. In
Proceedings of 10th Conference on Rewriting Techniques and Applications, Trento
(Italy), LNCS. Springer-Verlag, 1999.

11 Closure by union and complement implies closure by intersection.

Synchronized Tree Languages Revisited and New Applications 229

13. H. Seidl. Haskell Overloading is DEXPTIME Complete. Information Processing
Letters, 52(2):57–60, 1994.

14. F. Seynhaeve, S. Tison, and M. Tommasi. Homomorphisms and concurrent term
rewriting. In G. Ciobanu and G. Paun, editors, Proceedings of the twelfth In-
ternational Conference on Fundamentals of Computation theory, number 1684 in
Lecture Notes in Computer Science, pages 475–487, Iasi, Romania, 1999.

	Introduction
	Constraint Systems for Tuple Synchronized Languages
	Properties
	Deciding Emptiness
	Basic Closure Properties
	Join and Membership

	Application to Rewriting
	Application to Concurrency
	PA
	BCPC

	Further Work

