Class Analysis of Object-Oriented Programs
through Abstract Interpretation

Thomas Jensen and Fausto Spoto

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
{jensen,spoto}@irisa.fr

Abstract. We use abstract interpretation to define a uniform formal-
ism for presenting and comparing class analyses for object-oriented
languages. We consider three domains for class analysis derived from
three techniques present in the literature, viz., rapid type analysis,
a simple dataflow analysis and constraint-based 0-CFA analysis. We
obtain three static analyses which are provably correct and whose
abstract operations are provably optimal. Moreover, we prove that our
formalisation of the 0-CFA analysis is more precise than that of the
dataflow analysis.

Keywords: Abstract interpretation, class analysis, object-oriented lan-
guages, domain theory, semantics.

1 Introduction

Class analysis, one of the most important analyses for object-oriented languages,
computes the set of classes that an expression can have at run-time [TJ2JT0JTT]
12]. It can serve to prove type safety by guaranteeing that methods are only
invoked on objects that implement such a method. In certain cases it allows one
to optimise virtual method invocations into direct calls to the code implementing
the method. It is also used for building a precise call graph for a program which
in turn enables other analyses. A variety of class analyses have been proposed
(sometimes called receiver class analysis, type analysis, etc.), often using different
analysis frameworks. This complicates the comparison of the analyses w.r.t. their
precision. The complex question of proving the analyses correct is not always
addressed.

Cousot [7] shows how abstract interpretation [8]9] can organise eleven differ-
ent type systems for functional languages into a lattice that allows one to state
their correctness and establish their relative precision. Here, we apply abstract
interpretation to classify and prove correct class analyses for object-oriented lan-
guages. Abstract interpretation is a technique for the systematic construction of
semantics and semantics-based static analyses for programming languages. Given
a concrete semantics over a concrete domain and an abstraction function from
the concrete to an abstract semantic domain, abstract interpretation shows how
to define an abstract semantics over the abstract domain such that the result

F. Honsell and M. Miculan (Eds.): FOSSACS 2001, LNCS 2030, pp. 261-275] 2001.
© Springer-Verlag Berlin Heidelberg 2001

262 T. Jensen and F. Spoto

of the analysis is provably correct w.r.t. the concrete one. The abstraction func-
tion can be seen as a specification of the program property of interest, and the
abstract semantics as an analyser for that property. Furthermore, since abstract
interpretation is a framework for relating semantic definitions, it can be used
to compare the relative precision of two analyses. We present a framework for
the static analysis of object-oriented programs. It gives semantics to a simple
object-oriented language by specifying an algebra of states. The operations of
this algebra are reminiscent of Java bytecode operations. Different static anal-
yses are obtained by abstract interpretation of these operations. This approach
allows one to make the following three contributions:

— We define three abstractions of the above algebra, namely, three domains for
class analysis which use the same abstract information as [2], [10] and [T1].
We obtain formal reconstructions of these analyses in a common framework.

— We use abstract interpretation to derive optimal (and hence correct) abstract
operations for our three domains. Note that only the analysis in [11] has been
provided with an (informal) correctness proof.

— We show that our reconstruction of the analysis in [I1] is provably more
precise than that of the analysis in [10].

We emphasise that we are not questioning the correctness of the original analy-
ses. Nor are we aiming at defining new, more powerful class analyses (although
the present framework could be used for this). Our goal is to set up a frame-
work for studying the common structure of class analyses, and to facilitate their
comparison and proof of correctness by means of abstract interpretation.

The paper is organised as follows. Section[Z presents notation and preliminar-
ies. Section [B] shows our framework for the analysis of object-oriented languages,
the states and their operations. Sections[d] B and [define the analyses in [2], [10]
and [11], respectively, as abstract interpretations of the sets of states of Section
Bl Section [[] compares the precision of our three analyses. Section B] concludes.
Due to space limitations, some proofs have been omitted.

2 Preliminaries

We recall some notions of abstract interpretation [8]9]. In the following, a total
function is denoted by +— and a partial function by —. Let (C, <) and (4, <)
be two posets (the concrete and the abstract domain). A Galois connection is a
pair of monotonic maps o : C — A and v : A — C such that for each z € C
we have z < (yo «)(z), and for each y € A we have (e ov)(y) <X y. A Galois
insertion is a Galois connection where « o vy is the identity map. This means
that the abstract domain does not contain useless elements. The map « () is
called the abstraction (concretisation) function. The abstraction map uniquely
determines the concretisation map and vice versa.

Let f : C™ — C be an operator. We say that f : A" — A is correct
w.r.t. f if and only if for all y1,...,y, € A we have a(f(v(y1),-.. ,7(Yn))) =<

Class Analysis of Object-Oriented Programs through Abstract Interpretation 263

f(y1,... ,yn). For each operator f, there exists an optimal (most precise) cor-
rect abstract operator f defined as f(yl, coosyn) = a(f(y(y1), - ,v(yn))). This
means that f is the most precise abstraction of f which can be defined on A.

In the theory of abstract interpretation, the semantics of a program is the
fixpoint of a continuous operator f : C' — C, where C is the computational
domain [6]. Its collecting version [8] works over properties of C, i.e., over p(C)
and is the fixpoint of the powerset extension of f. If f is defined as composition
of suboperations, their powerset extensions and U induce the extension of f. The
U operation merges the semantics of the branches of a conditional. Note that the
powerset extension of a predicate over C' is a constant of p(C). In Props. 2]
and [0, we compute the optimal abstractions of the powerset extension of every
small operation g above as « o g o 7, consistently with the previous paragraph.

Upper closure operators (uco’s) are monotonic, extensive and idempotent
maps. They are isomorphic to Galois insertions [9]. The abstract domain induced
by an uco p over the concrete domain L (for our purposes, the semantic domain
p(C) of a collecting semantics) is its image p(L), i.e., the set of its fixpoints.
This image is a Moore family of L, i.e., a non-empty meet-closed subset of L.
Conversely, any Moore family of L is the image of some uco on L. Thus, in order
to define a Galois insertion on L, i.e., an abstraction of L, we can equivalently
define a Moore family on L, whose induced uco is the abstraction map. In Props.
[Bl and B we use this technique to prove that we deal with Galois insertions.

We denote by [v;+—t1,... ,v,—t,] afunction f whose domain is {vy,... ,v,}
and such that f(v;) =t; for i = 1,...,n. Its update is f[dy/wi,... ,dpn/wWn],
where the domain of the function can be potentially enlarged. Its domain and
codomain are dom(f) and codom(f), respectively. By f|s we denote the restric-
tion of f to s C dom(f), by f|_s its restriction to dom(f) \ s. A definition like
S={a,b), with a and b meta-variables, defines the selectors s.a and s.b for s € S.
For instance, Def. [defines o.x and o.¢, for o € Obj. If (D, <) is a poset and
d € D, we define [(d) ={d' € D | d <d}.

3 Semantic Domains and Operations

We describe here the semantic domain of program states and their operations.
A transition trace semantics (where the state is a stack of activation frames) can
be defined either in the style of Bertelsen’s small-step operational semantics [3]
or the Abstract State Machines of Bérger and Schulte [4]. Our set of operations
is not sufficiently complete to give semantics for a concrete language like Java,
(neither static fields and methods nor interfaces are considered). However it is
representative of the set of operations that would be required for such a task.
The correctness of the whole abstract interpretation follows by fairly standard
means from the correctness of the abstraction of the operations [8]9].

For simplicity, integers and booleans are the only basic types. There are no
static fields or methods. Methods are uniquely identified by a Method_ref (for
instance, their fully qualified name, like in Java), and classes by a Class_ref. We
define Type = {int,bool} U Class_ref , Int = Z and Bool = {true, false}.

264 T. Jensen and F. Spoto

In the following, we assume that the class structure of a program is specified
by some d € Decl, p € Pars and n € Name (see below), which give the classes,
the parameters of the methods and their names, respectively, together with a
subtype relation < on Type. For simplicity, we do not allow basic types to have
subtypes. By instance variables we refer to fields. A program variable is a local
variable, a parameter of a method or this. By class variables we denote the
variables and fields which can reference objects.

Definition 1. Let Id be an infinite set of identifiers, with this € Id. We define

o) dom(7) is finite
Typing = {T Hld = Type if this € dom(7) then 7(this) € Class_ref }
Class = Typing x (Id — Method _ref) Decl = (Class_ref — Class)

Pars = (Method_ref — seq(Id) x Typing) Name = (Method_ref — Id) .

If cl € Class, we name its components as cl = (t,v). If p € Pars,n € Name and
mr € Method_ref then p(mr) = (s,T), where this,n(mr) € s and dom(7) = s.

The hypothesis that n(mr) € s means that the name of a method is among
its local variables. Namely, it is used to store its result, like in Pascal procedures.
Typings map variables to types, but this can be bound only to objects. The
indirect definition of classes through Decl allows one to define two classes with
the same structure. This structure is a pair whose first component is the typing
of the fields defined or inherited by the class, and the second the table of the
methods defined or inherited by the class. The map Pars binds every method
reference to the typing (its signature) and its list of parameters. This list, whose
elements are the domain of the typing, is useful since it yields their order in the
definition of the method. The map Name binds a method reference to its name.

Ezample 1. Assume that we have two classes a and b, subclass of a, and that a
(and, hence, b) has a field n of class a. We model this situation as Class_ref =
{Kas Kb}y [Ka > a,kp — b] € Decl, a =b = ([n+— Ky, []) and K < k4. Note how
a and b have the same structure but have different class references.

Frames yield values to the variables addressable at a given program point.
The special variable this cannot be unbound. Memories map locations to ob-
jects. Objects contain their Class_ref and the frame of their instance variables.

Definition 2. Let Loc be an infinite set of locations. Let Value = Int+ Bool +
Loc+{nil}. Given T € Typing, we define frames, memories and objects as in Fig.
[Given py,ps € Memory, we say that uo is an update of u1, written i < o,
if dom(p1) € dom(us) and for every l € dom(uy) we have py(l).k = pa(l).k.

Def. [states that the types of the variables in a frame are consistent with its
typing, but class variables are just required to be bound to nil or a location (only
a location for this). In order to guarantee that they contain objects of a class
compatible with the typing, we define states, i.e., pairs of frame and memory.

Class Analysis of Object-Oriented Programs through Abstract Interpretation 265

¢ € dom(7) — Value and for every v € dom(1)
if 7(v) = int then ¢(v) € Int
Frame, = { ¢ |if 7(v) = bool then ¢(v) € Bool
if 7(v) € Class_ref then ¢(v) € {nil} U Loc
if this € dom(7) then ¢(this) € Loc

_ | p € Loc — Obj . Kk € Class_ref
Memory = {dom(,u) is finite Obj = | (K. 0) ¢ € Frameg).-

Fig. 1. Frames, memories and objects.

nop, : State, — State,

get,inti : Stater — Stater[int/res] with res & dom(7), i € Int
getnily” : State, — Stater(cr/res] with res ¢ dom(7), cr € Class_ref
get,booli : Stater — Stater(bool/res] with res € dom(7), b € Bool
getvar? : State, — State,(r(v)/res] with v € dom(7), res & dom(r)

getfield! : State, — Statesa(r(res)).=(f)/res]
with res € dom(7), 7(res) € Class_ref, f € dom(d(7(res)).T)

put_var, : State, — Stater|_, . with res € dom(7), v € dom(7), v # res, 7(res) < 7(v)

s
put_field® , : State, — (State,r — State,|)
T T ‘7765
with res € dom(1), 7(res) € Class_ref, f € dom(d(7(res)).T),
7' = 7[t/res] with t < d(7(res)).7(f)
=, : State, > (State, > Stater|bool/res]) with res € dom(r)

scope, | LTTHER(M)-S=2 L ghate vy Statep(mr).r|_ (mry

with res € dom(7), 7(res) € Class_ref,
p(mr).s \ {n(mr),this} = (t1,... ,tn), T(res) < p(mr).7(this),
v; € dom(7) and 7(v;) < p(mr).7(¢;) for every i = 1,... ,#p(mr).s — 2

unscope'” : State, — (State,(myy.r| — Staterip(mr).r(n(mr))/res])) With res g dom(7)

n(mr)
restrict.” : State, Stater|_ with vs C dom(r)

vt

expand. " : Stater — Stater[s/q) with v € dom(7), t € Type

Iookupid’"w C p(State,)
with res € dom(1), 7(res) € Class_ref, id € dom(d(7(res)).v), mr € Method_ref

new!" : State, — State (cr/res) with res & dom(7), cr € Class_ref

is_true, ,is_false C p(State,) with 7(res) = bool

Fig. 2. The signatures of the operations over the states.

Definition 3. Let 7 € Typing. Recall that < is the subtype relation. We say
that ¢ € Frame, is T-correct in a memory u, written ¢ o<, u, if it binds the class
variables in its domain to objects of classes compatible with 7. Namely, ¢ o,
if and only if for every v € dom(¢) such that p(v) € Loc we have ¢(v) € dom(p)
and (u(p(v))).k < 7(v). We define

State, = {<¢,)

¢ € Frame,, p € Memory, ¢ <, i
and for every (k,¢’) € codom(u) we have ¢" X4+ p

266 T. Jensen and F. Spoto

nop.. ({(¢, u)) = (P, 1) get,intf_(<¢>7 ny) = (pli/res), p)
get il (6, 1)) = (Blnil /res], ;) get-bool? (6, u)) = (@[b/res], u)
getvar, ((¢, i) = (¢[d(v)/resl, u) putvarl(($, pu)) = (B[¢(res)/v]|—res, 1)
(&' [(1(@' (res)).) (f)/res],) if ¢’ (res) # nil

undefined otherwise

(B2|—res, p2l(n2(D).K, p2 (1) ¢d2(res)/ f1) /1)
if p1 < pe and (I = ¢1(res)) # nil
unde fined

get field! ((¢', 1)) = {

put,ﬁeld_{ﬁ, (&1, n1)) (@2, p2)) =

otherwise

(¢2(true/res], pa)
if 1 < p2 and ¢1(res) = pa(res)
=r((¢1, n1)) (P2, n2)) = (d2[false/res], pa)
if p1 <A p2 and ¢1(res) # da2(res)

unde fined otherwise
scopel "L ((, p)) = ([er = B(v1), - s tn > S(vn), this > @(res)], p)
where (t1,... ,tn) = p(mr).s \ {n(mr), this}

(p1lp2(n(mr))/res], pa) if p1 < p2
unde fined otherwise

unscope"" ({¢1, p1)) (P2, p2)) = {

restrict?® ((, 1)) = (Dl _vor) expand®’ (6, 1)) = (Blinit() /0],)
Iookupf,al"mr(((b7) if and only if ¢(res) # nil and d(u(¢(res)).x).v(id) = mr

news" ({¢, u)) = (@p[l/res],ul{cr, init(d(cr).7))/1]) I € Loc fresh
is_true, ({(¢, p)) if and only if ¢(res) = true is_false- ({(¢, p)) if and only if ¢(res) = false,

where init(int) = 0, init(bool) = false, init(er) = nil for er € Class_ref and
init(t) = Av € dom(7).init(7(v)) for T € Typing.

Fig. 3. The operations over the states.

This set forms an algebraic structure with the operations whose signatures are
given in Figure[d and which are explicitly defined in Figure[3.

In these operations the variable res stands for the place where intermediate
results are stored and retrieved. In a semantics for a stack-based language such
as the Java bytecode, res would be the top of the operand stack. The binary
operations of Figure Blare undefined when the memory of the second argument is
not an update of that of the first one, to guarantee that the o, relation between
frame and memory of a state (Definition B is not broken by the operation.

The nop operation does nothing. The get_int operation loads an integer into
res. Similarly for get_nil and get_bool. The get_var operation fetches the value
of a variable v and loads it into res. The get_field operation fetches from res
a non-nil reference to the object containing the field. The content of this field
is loaded into res, whose type is updated with the declared type of the field.
Note how this content is found. Since ¢’ (res) points to the object containing the
field, u(¢’(res)) is that object. Its fields are in (¢’ (res)).¢ and the field f is
then p(¢'(res)).@(f). The put_var operation copies the content of res into v. The
declared type of res must be a subtype of that of v. There is no resulting value.
Thus, the variable res is removed from the typing of the result. In the put_field

Class Analysis of Object-Oriented Programs through Abstract Interpretation 267

operation the res variable of the first argument points to the target object, while
that of the second argument contains the new value for the field, whose declared
type must be a subtype of that of the field. By using two states instead of an
object and a value, we deal with just one semantic domain. In Fig. Bl we see its
implementation. Since | = ¢1(res) points to the target object, it must not be
nil and po(l) is that object (since 1 <1 o). We write ¢o(res) in the variable f
of the frame ps(l).¢ of that object. For every binary operation of the language
there is a corresponding binary operation on states, like the shown case of =.

Four operations (scope, unscope, restrict and expand) modify the structure of
frames and states. The operations scope and unscope are used before and after a
method call, respectively. The former creates a new frame in which the invoked
method mr executes. Its typing is p(mr).7|_;,(mr) since the variable n(mr), i.e.,
the name of the method, is not among its inputs. Note that p(mr).7|_,mr)
contains exactly the parameters of the method and the implicit this parameter.
In this operation res points to the object over which the method is called and
becomes the new this variable, which justifies the subtype check in Fig.] The
first argument of the unscope operation is the state before the method call. The
second is the state at the end of the execution of the method. The frame of this
second state contains just a variable with the name of the method, and holds its
result like in Pascal procedures (in a complete operational semantics, the frames
of these two states would be the top two elements of the stack). The operation
restores the frame at the beginning of the execution of the method, by copying
into res its result, and yields the memory at the end of its execution. The restrict
operation removes some variables from a state and expand adds a new initialised
variable to a state.

The lookup predicate for dynamic method lookup holds if by invoking
the method id on the object referenced by res the method referenced by
mr is selected. The object on which the method is invoked is u(¢(res)), its
class reference u(¢(res)).x and the list of its methods d(p(p(res)).k).v. If
d(u(p(res)).c).v(id) = mr means that by calling id we select the method mr.
The new operation creates a new initialised object and loads it into res. The
is_true (is_false) predicate contains those states whose res variable contains true

(false).

Example 2. In the situation of Ex.[Il consider how the following sequence of op-
erations change the state. Reading downwards, we start from a state containing
just the variable vy, we introduce a new variable v, we create and store in res
a newly initialised object, we read its n field into res and we store it into vs.

[Operation [State

([vr ¥~ U1], [l1 — (Ka, [0 — nil])]) (initial state)

vyikg

expand[v1 ral

([vr ¥ U1, v2 = nil], [l1 — (Ka, [n — nil])])

newfvl’1 vasal ([vr =11, va = nil, res— o], [l1 — (Ka, [nil]), lo— (kp, [n—nil])])

get,fieldl[’,ulYUQ._mames,_wb] ([vr = U1, va = nil, res—nil], [l1 — (Ka, [nid]), lo — (kp, [n—nil])])

t_var; 2
PULVAr D vy resisngl

([vr ¥ 11, v2 = nil], [l1 — (Ka, [0 — nil]), lo — (kp, [0 — nil])])

268 T. Jensen and F. Spoto

nop!**(s) = (get_int:)”“(s) = (getnil7")™"(s) = istrue" (s) = s

ta

(get_bool?)™*(s) = (get_var’)"**(s) = (put_var’)™"*(s) = is_false["*(s) = s

if sN
(get field!)" (if sNir(res) =10
otherwise

(put,fieldf, /) ”” { if siNsaNir(res) =10

otherwise
SI%(s1)(s2) =52 (scopell)M (g) =
(unscope")™*(s1)(s2) = s2 (restrlcth)Tta(s) =s
(expand?™)™"(s) = s (newS") (s) = s U {cr} UL (s1)(s2) = s1 U s2

if there exists k € s N |7(res)

h that d(k).v(id) =
(Iookupzd m'r)rta (S) _ suc a (H) V(Z)

(® otherwise.

rta

Fig. 4. The instantiation over State™® of the operations of Figure Bl and of U.

4 Rapid Type Analysis (rta-Analysis)

Bacon and Sweeney defined [2] a simple and efficient rapid type analysis (rta) of
little precision. They collect the set IV of classes instantiated by a new command.
The classes of an expression e are (].D(e)) N N, where D(e) is the declared type
of e. In terms of abstract interpretation, this technique amounts to defining an
abstraction which collects the classes of the objects in the memory of the states.
A priori, abstract interpretation can distinguish this set of classes in different
program points. Then it results in a more precise analysis than that in [2].

Definition 4. Fort € Typing, the abstract domain is State'* = p(Class_ref)
with the concretisation map "'* : State’t® p(StateT) such that (here,
o € codom(i1) means that o is an object in the memory u) ¥4 (s) = {{¢,u) €
State, | for every (k,¢') € codom(p) we have k € s}.

Proposition 1. For 7 € Typing, the set y"'*(State™®) is a Moore family of
p(State,). Hence Statel® is an abstract domain whose induced abstraction map
is o' : p(State,) — State™® such that

Q" (8) = {k € Class_ref | (¢,) € S and {k,¢’) € codom (i)} .

Proof (Sketch). The non-empty set y"**(State’*®) is a Moore family since it is
N-closed. Indeed, it can be shown that for every {s;}ien C State’™® we have
Nienyrte(s;) = ﬂt“(meNs). The o map is derived [89] as a”“(S) =n{s e
Statet | S C ~"(s)} = N{s € p(Classref) | (¢,u) € S and (k,¢') €
codom(u) entails k € s}={r € Class_ref | (¢,) € S and (k,¢’) € codom(u)}.

Class Analysis of Object-Oriented Programs through Abstract Interpretation 269

Proposition 2. The optimal abstract counterparts of the powerset extension of
the operations of Figure[d and of U are those given in Figure [{].

The only operation in Figure @which enlarges the set of classes created during
the execution of the program is new. The operations get_field and put_field check
if a class compatible with the declared type of res has been instantiated, since
otherwise res must be bound to nil, and the concrete operation fails. Similarly,
lookup checks if it has been instantiated some class such that a call to the method
id results in the execution of the method referenced by mr. Note how these
operations allow the set of classes instantiated to shrink. This is a consequence
of the use of abstract interpretation, which deals with different program points.
Tt is a distinguishing feature w.r.t. the original technique in [2].

Ezample 3. We execute over State’'® the same sequence of instructions of Ex.
The initial state is the abstraction (Prop. [I) of the initial concrete state. The
final abstract state says that vy and vg, both of declared type a, can be bound
to objects of class a or b, which is a correct but rather imprecise approximation
of the concrete final state of Example

’ Operation \ State ‘
{Kq} (initial state)
(expa:dfil"if;ﬁa])r:a {Ka}
(newpy oy)™ {Ka, Kb}
(get*ﬁeldr[l'ul,vsza,res»—)Kb])Tta {Iia’ '%b}
v
(pUt*Var[qu,vz,reana])Tta {Iia’ Kb}

5 Dataflow Analysis (df-Analysis)

In the dataflow analysis of [10] only program variables are analysed, while fields
are approximated with the downwards closure |(¢) of their declared type t.

Compare this with Definition 2 An abstract value is a set of types which share
a supertype. An abstract frame maps variables into abstract values consistent
with the given typing. The special variable this cannot be unbound.

Definition 5. Given 7 € Typing, we define Value¥ = {S € o(Type) | S C
Lt for some t € Type} and

¢ € dom(7) — Value¥ and for every v € dom(7)
if T(v) =int then ¢(v) = {int}
Frame¥ = { ¢ |if 7(v) = bool then ¢(v) = {bool}
if T(v) € Class_ref then ¢(v) C [7(v)
and if this € dom(7) then ¢(this) # ()

% integer and boolean variables are always mapped to {int} and
{bool}, respectively. We consider them just to simplify the presentation.
There is no abstract memory. Then abstract states are just abstract frames
(compare with Definition B]). The special abstract state () represents the empty
set of concrete states and improves the precision of the analysis.

In Frame®

270 T. Jensen and F. Spoto

nopff(qS) =¢ (get,inti)df(qb) = ¢[{int}/res]
(getnil" Y7 (¢) = p[0/res] (get-bool®)¥ (¢) = ¢[{bool}/res]
(getvar) ¥ (¢) = glp(v)/res] (putvar))¥ () = lp(res)/v]|—res
0 if ¢p(res) =0
#lL(d(r(res)).7(f))/res] otherwise
0 if ¢1(res) =0

¢2|—res oOtherwise

(get field!)Y (¢) = {

(putfield”)7 (¢1)(p2) = {

=7 (91)(62) = dal{bool}/res] U (#1)(92) = Av € dom(7).¢1(v) U $2(v)
(scopel" V1o 0y () = (11 = (V1) ... 5 tn — G(vn), this — B(res)]
where (t1,...,tn) = p(mr).s\ {n(mr), this}
(unscopel)™ (¢1)(¢2) = 1l (n(mr))/res]
(restrict}") (¢) = ¢l —va (expand;™")¥ (¢) = @[init" (1) /]
g[S/res] if S = {cr € ¢(res) | d(cr).v(id) = mr} #0

otherwise

(lookup’™ ™)™ (¢) = {
(new)Y (¢) = pl{cr}/res] istruel (¢) = isfalsel () = ¢ ,

where init¥ (int) = {int}, init¥ (bool) = {bool}, init¥ (cr) = 0 for er €
Class_ref.

Fig. 5. The instantiation over State™ of the operations of Figure B and of U.

Definition 6. For 1 € Typing, the abstract domain is Stated = {0}UFrame¥ .

The relation & says when an abstract value (i.e., a set of types) approximates
a concrete value. The set {int} approximates the integers, the set {bool} approx-
imates the booleans and a set of classes S approximates nil and all locations
containing an object of a class in S.

Definition 7. Let u € Memory. We define ~,: Value® xValue as the minimal
relation such that {int} ~,, i, with i € Int, {bool} ~,, b, with b € Bool, S ~,, nil,
with S # {int} and S # {bool}, and S ~, | with | € Loc and u(l).x € S. This
relation is pointwise extended to ~,;: Frame¥ x Frame,, for T € Typing.

The concretisation of an abstract state ¢ is the set of concrete states (¢, u)
whose frame ¢’ binds every variable v € dom(¢) to a concrete value ¢'(v) ap-
proximated (=) by the abstract value ¢(v), i.e., ¢(v) =, ¢'(v).

Definition 8. For T € Typing, we define the concretisation map v¥ : State¥
p(State,) such that v (0) = 0 and 4% (6) = {(&', u) € State, | 6 ~, o for
every ¢ € State¥ \ {0}.

Proposition 3. For 7 € Typing, the set y¥ (State¥) is a Moore family of
p(State,). Hence State¥ is an abstract domain whose induced abstraction map
is a¥ : p(State,) — State¥ such that a¥())=0 and, for S#0, a¥(S)=a such
that for v € dom(7), a(v) = {int} if T(v) = int, a(v) = {bool} if T(v) = bool and
a(v) = {pu(p(v)).c | (p,u) € S and ¢(v) € Loc} if T(v) € Class_ref. In this last
case, a¥ collects the classes of the objects bound to v in some concrete state.

Class Analysis of Object-Oriented Programs through Abstract Interpretation 271

Proposition 4. The optimal abstract counterparts of the powerset extension of
the operations of Fig.[3 and of U are those given in Fig.[8 All of them, except
UY are strict on all their arguments. For instance, (unscope™)Y (0)(¢s) =

(unscope™)¥ (¢1)(0) = (unscopel™) (0) () =0. For U¥ , we define UX (0)(¢2) =
ba, UX (¢1)(0) = ¢1 and UZ (0)(0) = 0.

Ezxample 4. We execute over Statef_f the same sequence of instructions of Ex. 2l
The initial state is the abstraction (Prop. 3] of the initial concrete state.

’ Operation \ State ‘
[v1 — {Kq}] (initial state)
(expandp?Te)Y [v1 — {Kq}, v2 > 0]
o w2 al @ [v1 = {Ka},v2 — 0, res — {kp}]
(get fleld[v1 o, ,ﬂesHKb])df [v1 = {Ka},v2 = 0, res = {Kq, Kp})
(put var [1)1 U27rm'_>“]) [Ul — {Ha}a'UQ — {“a»’%}]

(new[

The final abstract state says that v; can be bound to objects of class a and vy
to objects of class a or b, which is a correct approximation of the concrete final
state of Example 2] It is strictly more precise than that obtained in Example [3

6 O0-CFA (ps-Analysis)

In [11], Palsberg and Schwartzbach defined a class analysis as a constraint prob-
lem. Every variable and every field is given a set of classes. These sets are then
related by constraints which model the dataflow of the program. This means
that the information about program variables is that used in the case of the
dataflow analysis of Section [, but this analysis deals with fields too. However,
all objects of the same class are identified. The analysis of a method is the same
for every call point and hence this analysis is a 0-CFA analysis [13].

That analysis leads to an abstract domain made of an abstract frame, identi-
cal to those used in Section Bl and of an abstract memory. The abstract memory
is an abstract frame for the fields of the classes. We can assume without any loss
of generality that fields in different classes have different names.

The difference with the original technique in [I1] is that abstract interpreta-
tion does not a priori identify different occurrences of the same variable, while
in [I1] the same variable has assigned the same set of classes in every program
point. This, together with the formally proved optimality of our abstract oper-
ations (Proposition [)), suggests that our analysis should be more precise than
that in [I1], without using any technique like multiple variables for different uses
of the same variable or method splitting [12].

Definition 9. We define the typing T = Ukeciass_refd(k).T of the fields of all
classes. It makes sense since fields have different names. For T € Typing such
that dom(7) C dom(7) and ¢ € Frame,, we define ¢ € Frames as ¢(v) = ¢(v)
if v € dom(7), and ¢(v) = init(F(v)) otherwise (init has been defined in Fig.[3).

272 T. Jensen and F. Spoto

nop?” ((¢, 1)) = (¢, 1) (get-int})**((¢,) = (¢[{int}/res], u)

(get i) (6, 1)) = (9[0/res],) (get bool?)" (g, 1)) = {G[{bool}/res], u)
(etovar!) ((6,m)) = (Glo(v)/resl.w) (putyar)?" (9, 1)) = ($[6(res) /]| —res)
(0,) if ¢p(res) =0
(p[u(f)/res], u) otherwise
(0, p2)

if ¢1(res) =0
(2] —res, palu2(f) U pa2(res)/ f1)

(get_field)P° ((¢, u)) = {

(put-field!)7*((¢1, n1)) (2, p2)) =

otherwise
=21, u1)) (b2, p2)) = (b2[{bool}/res], p2)
(scopel™ ™1)2 (1)) = ([i1 1 B(01), - - - » tm > $(vn), This 1> B(res)],)
where (t1,...,tn) = p(mr).s\ {n(mr), this}

(unscopel™)P ({1, p1)) (b2, 1)) = ($1]d2(n(mr))/res], u2)
(restrict?*)?° (¢, 1)) = (Pl—vs, i) (expand?)P ((¢p,) = (B[init™ (¢) /0], 1)

(d[S/res], u)

if S={creo¢(res) | d(cr).v(id)=mr} #0
(0,)

otherwise

(newS)P ((¢, 1)) = (l[{er}/res], p) istruel®((¢, p)) = isfalsel* ((¢, u)) = (¢, 1)
U ((p1, 1)) (b2, p2)) = (UF (61)(h2), UL (1) (p2))

(lookup’™™)7 (6, u)) =

where init¥ and U¥ are defined in Figure [l

Fig. 6. The instantiation over State?® of the operations of Fig. [3 and of U.

Definition 10. For 7 € T'yping, the abstract domain is StateP® = (FrameP?® x
MemoryP®), with Frame*=State¥ and Memoryps:Frameif (Defs. [d andl[g).

Compare the following definition with Definition [§ The relation ~ has been
defined in Definition [An element (¢, u) € Statel® represents those concrete
states whose frame is compatible with ¢, i.e., their class variables are bound to
objects of a class allowed by ¢, and whose memory contains objects with an
internal frame compatible with p, i.e., their fields are bound to objects of a class
allowed by pu. Since the frame of an object is for its instance variables only, we
extend it to the whole set of fields before its comparison with pu.

Definition 11. Given 7 € Typing, we define the concretisation map ~P° :
Statel® — p(Stater) as

7 d /
({6, 1)) = 4¥ (6) N {<¢',u’> e State, | 17 £y ¢) € codom () } |

The following abstraction map formalises the idea of the analysis. A set of
concrete states S is abstracted through a¥, as in Section [3, but a second com-
ponent provides more information about the fields. Namely, it is the abstraction
through o of the states of the objects in memory.

Class Analysis of Object-Oriented Programs through Abstract Interpretation 273

Proposition 5. For 7 € Typing, the set vP*(Statel®) is a Moore family of
p(State,). Hence StateP® is an abstract domain whose induced abstraction map
is aP® : p(State,) — Statel® such that (init(T) avoids empty abstract memories)

a?*(8)=(a¥(8), a¥ ({init(7)} U {(¢, 1) | (¢,) €S and (k,¢') € codom(p)})).

Proposition 6. The optimal abstract counterparts of the powerset extension of
the operations of Fig.[3 and of U are given in Fig.[@l for the case when the frame
of their arguments is not (). Otherwise they yield (O, u) for an arbitrary p €
MemoryP®, except UP* which is such that UPS ({0, u))(e) = UL (e) ({0, u)) = e.

In Figure [the frame component of the abstract states behaves like in Section
Bl except in get_field. The memory component does not change if the memory
of the concrete operations (Figure B does not change. The operations get_field
and put_field allow a flow of information between abstract frames and abstract
memories. Namely, get_field loads in the abstract frame the set of classes u(f) of
the objects stored in the field f. Conversely, put_field adds the classes contained
in res, i.e., ¢2(res), to the set of classes already stored in the field, i.e., pa(f).
In this way, we accumulate all classes stored in the field during the execution.

Example 5. We execute over State?® the same sequence of instructions of Ex.
The initial state is the abstraction (Prop. [l of the initial concrete state.

’ Operation \ State ‘
([v1 = {kKa}], [n — 0]) (initial state)
(expand[>%s)P ([vi = {Ka}, v2 = 0], [0 = 0])
(news)™ ([= {Kat,va = 0, res = {rp}], [0 — 0])
(getfield]y, v,isnyressn,)7°| (V1 {Ka}, v2 = 0,7es = 0], [n — 0])
(put,varﬁflmmes'_ma})ps ([or = {Ka}, v2 = 0], [0 — 0])

The final state says that v; can be bound to objects of class a, and that v, and
the field n are bound to nil, the exact approximation of the final state of Ex. 2l

7 Comparison

We compare here the precision of the domains defined in the previous sections.

Proposition 7. For 7 € Typing, we have y¥ (State¥) C vP*(State?®) and the
ps-analysis computes a more precise information than the df -analysis.

Proof. Since v¥ () = 0 = P*((0, u)) € P*(Statel®) for u € Memory?®, it is
enough to show that ¥ (Frame®) C 4P*(State?*). This will entail the desired
result, since the abstract operations (Figs. Bl and [B) are optimal (§8 of [9]). The
idea is that every ¢ € Frame¥ is the frame of a pair (¢, u) € State?* where
does not introduce any restriction. Let pu(v) = {int} if 7(v) = int, p(v) = {bool}
if 7(v) = bool and p(v) = L(7(v)) if 7(v) € Class_ref for v € dom(7). Then
(¢' 1)y €Y () ff = ¢ HE (¢~ ¢ and for every (k,¢") € codom(y') we

have pr,s @), iff (¢, 1) €975 ((p, 1)), Le., YH (@) = 7P*((¢,).

274 T. Jensen and F. Spoto

The rta- and the df-analysis are incomparable. In the final states of Exs.
Bl and @] the df- is more precise than the rta-analysis. But consider the initial
states of those examples, i.e., the respective abstractions of the initial concrete
state of Ex. Pl In Ex.[3 the possible classes for the field n are {x,}, while in Ex.
Hl they are {kq, kp}, because that abstraction does not provide any information
about the fields. Hence the df-analysis provides a coarser approximation of the
set of classes for the field n than the rta-analysis.

We strongly believe that the ps-analysis is more precise than the rta-analysis.
Indeed, the ps-analysis distinguishes between the classes stored in different vari-
ables, while the rta-analysis merges all classes in just one set. For instance,
in the context of Ex. [[] the concrete states o1 = ([v; — l,va — nil], [l —
(Ka, [0 = nil])]) and o3 = ([v1 = nil,ve = 1], [l = (ka, [n — nil])]) are such
that o ({o1}) = a"*({o2}) = {Kka} while a?*({01}) = ([v1 = {Ka},v2 —
0],[n — 0]) and a?*({o2}) = ([v1 — 0,v2 — {Ka}],[n — 0]). In this case, the
ps-analysis distinguishes o1 and o5 which do bind the variables to objects of
different classes, while the rta-analysis does not. When trying to generalise this
result into a formal proof, we are faced with the problem that the rta-analysis
considers all objects in memory, while the ps-analysis only those reachable from
the current frame or that of another object (Def. [[d]). For instance, in the con-
text of Ex. [[] the concrete states o3 = ([v — nil], [l = (kq,[n — nil])]) and
o4 = {[v — nil],[]) are such that o?*({o3}) = a?*({04}) = ([v — 0],[n — 0]),
while @™ ({03}) = {k4} and a"*({o4}) = 0. However, this ability to distinguish
such states, which contain the same class information, is of no use for the class
analysis. Indeed, objects in memory can affect an expression of the program only
if they are reachable from some variable. A formal proof of this statement can
be obtained, e.g., by quotienting [5] both domains w.r.t. class information.

8 Conclusions

Class analyses for object-oriented languages are many and varied. This paper
shows that abstract interpretation leads to a formal framework for the develop-
ment and comparison of such analyses. To demonstrate this, we have put three
traditional techniques for class analysis inside that framework. This provides a
systematic construction of the abstract operations of a particular analysis. Fur-
thermore, it allows a formal comparison of the relative precision of the analyses.
Due to space limitations, it has not been possible to show the details of how the
set of operations can be used to give semantics to e.g., Java or Java bytecode.

Several extensions to the present work are to be considered: There are more
class analyses than the ones considered in this paper and the classification that
we have initiated here should be carried further. Analyses can be combined so
as to use the combination of two abstract domains in an analysis. Formally,
this is characterised by the reduced product of two abstractions that defines a
semi-lattice structure on the set of abstractions. An interesting problem is to
construct a concrete representation of the reduced product of, say, the rta- and
the df-analysis.

Class Analysis of Object-Oriented Programs through Abstract Interpretation 275

Since we have algorithms for the abstraction of a finite set of states (Props.

and [A), and for the abstract operations (Props. [2, M and [6) and since our
domains are finite (for a given 7 € Typing), the framework provides a way of
implementing the static class analyses. The practical aspects of such an imple-
mentation remain to be investigated.

References

1.

10.

11.

12.

13.

O. Agesen. Constraint-Based Type Inference and Parametric Polymorphism. In
B. Le Charlier, editor, Proc. of the 1st Int. Static Analysis Symp., volume 864 of
Lecture Notes in Computer Science, pages 78—-100. Springer-Verlag, 1994.

D. F. Bacon and P. F. Sweeney. Fast Static Analysis of C++ Virtual Function
Calls. In Proc. of OOPSLA’96, volume 31(10) of ACM SIGPLAN Notices, pages
324-341, New York, 1996. ACM Press.

P. Bertelsen. Semantics of Java Byte Code. Technical report, Department of
Information Technology, Technical University of Denmark, March 1997.

E. Bérger and W. Schulte. Defining the Java Virtual Machine as Platform for
Provably Correct Java Compilation. In L. Brim, J. Grunska, and J. Zlatusla, edi-
tors, 28rd Int. Symp. on Mathematical Foundations of Computer Science. Springer
LNCS vol. 1450, 1998.

A. Cortesi, G. Filé, and W. Winsborough. The Quotient of an Abstract Interpre-
tation. Theoretical Computer Science, 202(1-2):163-192, 1998.

P. Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System
by Abstract Interpretation. In S. Brookes and M. Mislove, editors, 13th Conf.
on Math. Found. of Programming Semantics, volume 6 of Electronic Notes on
Theoretical Computer Science, Pittsburgh, PA, USA, March 1997. Elsevier Science
Publishers. Available at http://www.elsevier.nl/locate/entcs/volume6.html.
P. Cousot. Types as Abstract Interpretations. In 24th ACM Symposium on Prin-
ciples of Programming Languages (POPL’97), pages 316-331. ACM Press, 1997.
P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Jth ACM Symp. on Principles of Programming Languages, pages 238252, 1977.
P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In
6th ACM Symp. on Principles of Programming Languages, pages 269—282, 1979.
A. Diwan, J. E. B. Moss, and K. S. McKinley. Simple and Effective Analysis
of Statically Typed Object-Oriented Programs. In Proc. of OOPSLA’96, volume
31(10) of ACM SIGPLAN Notices, pages 292—-305, New York, 1996. ACM Press.
J. Palsberg and M. I. Schwartzbach. Object-Oriented Type Inference. In Proc.
of OOPSLA’91, volume 26(11) of ACM SIGPLAN Notices, pages 146-161. ACM
Press, November 1991.

J. Plevyak and A. A. Chien. Precise Concrete Type Inference for Object-Oriented
Languages. In Proc. of OOPSLA’94, volume 29(10) of ACM SIGPLAN Notices,
pages 324—-340. ACM Press, October 1994.

O. Shivers. Control-Flow Analysis in Scheme. In Proc. of the 1988 Conf. on Pro-
gramming Languages Design and Implementation, volume 23(7) of ACM SIGPLAN
Notices, pages 164-174. ACM Press, July 1988.

	Introduction
	Preliminaries
	Semantic Domains and Operations
	Rapid Type Analysis (rta-Analysis)
	Dataflow Analysis (df-Analysis)
	0-CFA (ps-Analysis)
	Comparison
	Conclusions

