Foundations for a Graph—Based Approach to the
Specification of Access Control Policies*

Manuel Koch?, Luigi Vincenzo Mancini?, and Francesco Parisi-Presicce?3
! PSI AG, Berlin (DE)
2 Univ. di Roma La Sapienza, Rome (IT)
3 George Mason Univ., Fairfax VA (USA)
mkoch@psi.de 1lv.mancini@dsi.uniromal.it parisi@dsi.uniromal.it ;
fparisi@ise.gmu.edu

Abstract. Graph Transformations provide a uniform and precise frame-
work for the specification of access control policies allowing the detailed
comparison of different policy models and the precise description of the
evolution of a policy. Furthermore, the framework is used for an accurate
analysis of the interaction between policies and of the behavior of their
integration with respect to the problem of conflicting rules. The integra-
tion of policies is illustrated using the Discretionary Access Control and
the Lattice Based Access Control policies.

1 Introduction

A considerable amount of work has been carried out recently on models and lan-
guages for Access Control. Access Control (AC) is concerned with determining
the activities of legitimate users [SS94]. Usually AC is enforced by a reference
monitor which mediates every attempted access by a subject (a program exe-
cuting on behalf of a user) to objects in the system. In [KMPPOOb/KMPP0O0a]
we have proposed graph transformations as a uniform conceptual framework for
the specification of access control policies. In this paper we discuss the formal
properties of this framework and their applications to problems not addressed
anywhere else in a formal way.

The three main AC policies commonly used in computer systems are dis-
cretionary policies [SS94], lattice-based policies (also called mandatory policies)
[San93] and role-based policies [San98|. As illustrative examples, we use here
the lattice-based access control (LBAC) and the access control list (ACL) that
is an implementation of a discretionary policy. Role-based access control is not
considered in this article, but is the main focus of [KMPPOOD].

Lattice-based access control: Classic LBAC enforces unidirectional infor-
mation flow in a lattice of security levels [. The diagram on the left-hand side
of Fig. [l shows a partial order security lattice.

* partially supported by the EC under TMR Network GETGRATS and under Esprit
WG APPLIGRAPH, and by the Italian MURST.

1 In [San93], security levels are called security labels. We use ‘security level’ here to
avoid confusion with the notion of a label for a node or an edge in a graph.

F. Honsell and M. Miculan (Eds.): FOSSACS 2001, LNCS 2030, pp. 287-B02] 2001.
© Springer-Verlag Berlin Heidelberg 2001

288 M. Koch, L.V. Mancini, and F. Parisi-Presicce

security lattice graph LBAC type graph

security lattice
/ " \
M N
L

-

Fig.1. A security lattice (left-hand side) and its presentation by a graph (middle).
The type graph for the LBAC model (right-hand side).

The LBAC policy is expressed in terms of security levels attached to subjects
and objects. A subject is a process in the system and each subject is associated
to a single user, where one user may have several subjects concurrently running
in the system. An object is a container of information, e.g. files or directories in
an operating system. Usually the security levels on subjects and objects, once
assigned, do not change. If A(z) denotes the security level of (subject or object)
then the specific LBAC rules for a lattice allow a subject S to read object O if
A(S) > A(O) and to write object O if A(S) = A(O).

Access Control List: The ACL policy is an implementation of a discre-
tionary AC policy. We consider an ACL policy similar, but simpler, to that one
used in the UNIX operating system. Our model distinguishes only between the
owner of an object and the rest of the world and for simplicity groups are not
considered. The owner of the object has read, write and execution access and
can change the access permissions of the object with respect to the world.

The different models for Access Control have been specified with expres-
sive but ad hoc languages requiring ad hoc conversions to compare the relative
strengths and weaknesses. Not much work [BAVS00] has been performed on the
evolution of a policy, to construct in an incremental way complex policies, and
on the integration of policies, to obtain the global policy of an organization by
combining the security policies of different departments.

The main goal of this paper is to present some basic properties of a formal
model for Access Control policies based on graphs and graph transformations
and to address the problems of evolution and integration in a categorical set-
ting. A system state is represented by a graph and graph transformation rules
describe how a system state evolves. The specification (”framework”) of an AC
policy contains also declarative information (”invariants”) on what a system
graph must contain (positive) and what it cannot contain (negative). A crucial
property of a framework is that it specifies a coherent policy (one without in-
ternal contradictions). As with any soft system, policies can evolve and can be
combined: we have formalized here in a categorical setting the notions of evo-
lution and of integration and their main properties. To help with the issue of
conflicting rules in the integrated framework obtained by combining two distinct
ones, the notion of metapolicy is proposed.

Foundations for a Graph—Based Approach to the Specification of AC Policies 289

The paper is organized as follows: the next section reviews graph transforma-
tions and introduces the LBAC and the ACL policies; Sect. 3 defines the formal
framework to specify AC policies and presents its main properties; Sect. 4 dis-
cusses the notion of integration of policies and Sect. 5 introduces metapolicies
to resolve conflicts; the last section mentions related and future work.

2 Graph Transformations

This section introduces graph transformations [R0z97]. The LBAC model is used
throughout the section to support the explanations by an example.

A graph G = (Gv,GE, sa,ta,lg) consists of disjoint sets of nodes Gy and
edges G g, two total functions s, t¢ : Gg — Gy mapping each edge to its source
and target node, respectively, and a function lg : Gy U Gg — L assigning to
each node/edge a label. Labels are elements of a set L = X UC, where X is a set
of variables and C' is a set of constants. A binary relation <C L x L is defined
on L as o < [if and only if & € X. A path between nodes a and b is indicated
by an edge a — b and can be seen as an abbreviation for a set of paths each
representing a possible sequence of edges between a and b.

A total graph morphism f : G — H between graphs G = (Gv, Gg, sa, ta,la)
and H = (Hy,Hg, sy, ty,ly) is a pair (fy, fg) of total mappings fy : Gy —
Hy and fg : Gg — Hpg that respect the graph structure, i.e. fyy osg =sgo fg
and fy otg =ty o fp, as well as the label order, i.e. lg(v) < lg(fy(v)) for each
v € Gy and lg(e) < lg(fr(e)) for each e € Gg. A partial graph morphism f :
G — H is a total graph morphism f : dom(f) — H from a subgraph dom(f) C
G to H. Graphs and partial graph morphisms form a category Graph®. The
subcategory of graphs and total graph morphisms is denoted by Graph. The
category GraphP is in general not co-complete, but has pushouts for morphisms
fp:G— H and f.: G — K where f, is label preserving, i.e. lg(z) = lg(fp(z))
for all z € G (node or edge) [PPEMST].

A type graph TG represents the type information in a graph transformation
system [CELP96], specifying the node and edge types which may occur in the
instance graphs modeling system states. For instance, the type graph in Fig. [
on the right shows the possible types for the LBAC graph model. There is a type
U for user nodes, a type S for subjects, a type O for objects, a type V for the
value of objects and a type SL for the security levels. This type graph indicates
also that there cannot be an edge from a node of type U to a node of type O.

A pair (G,tg), where G is a graph and tg : G — TG is a total graph
morphism, is called a graph typed over T'G. If the type graph is fixed, we denote
the pair simply as G. The total graph morphism t¢ is called typing morphism
and is indicated in the examples by the symbols used for nodes and edges. In the
middle of Fig. [0l a graph typed over the LBAC type graph is shown. The graph
consists of a node with label H1 and type SL, a node with label S1 and type
S, a node with label O1 and type O, etc. The security lattice on the left-hand
side is modeled by a security lattice graph. From now on, the typing morphism
maps a node with label Tx to the type T.

290 M. Koch, L.V. Mancini, and F. Parisi-Presicce

A morphism between typed graphs (G,tg) and (H,ty) is given by a partial
graph morphism f : G <= dom(f) — H that preserves types, that is, the diagram

G——om(f)——H
N A

in Graph commutes. The morphism is total if the underlying graph morphism
is total. Graphs typed over a fixed type graph T'G and morphisms between them
form a category TG [CELP96]. The existence of pushouts is inherited from the
category Graph?.

A graph typed over a type graph T'G can be re-typed over TG’ if there is
a total morphism f : TG — TG’. The re-typing of a graph (G, tg) typed over
TG to a graph typed over TG’ is a renaming of types in G. Re-typing from
TG’ to TG is a renaming of types and a forgetting of nodes and edges. For-
mally, the re-typing w.r.t. a morphism f : TG — TG’ is specified by functors
Fr: TG — TG’ and Vi e TG’ — TG, called forward typing and backward
typing functor [CELPI6JGRPPS9S].
A graph rule p : r, or just rule, is given by a rule name p, from a set RNames,
and a label preserving morphism r : L — R. The graph L, left-hand side, de-
scribes the elements a graph must contain for p to be applicable. The partial
morphism is undefined on nodes/edges that are intended to be deleted, defined
on nodes/edges that are intended to be preserved. Nodes and edges of R, right-
hand side, without a pre-image are newly created.

Ezample 1 (Graph rules for the LBAC graph model). Figure Rlshows the rules for
the LBAC policy. The labels for the nodes (Ux, Sz, SLxz, SLy, ...) of the rules are
variables taken from the set of variables in L. The rule new object creates a new
object Oz connected to a node Vz (the initial value of the object). The object

new object @
- S A
+ new subject *
. —_—
delete object : @ @ @ @ @

delete subject

G T @

@?gg . O © S ’7

9@

Fig. 2. Graph rules for the LBAC policy.

Foundations for a Graph—Based Approach to the Specification of AC Policies 291

Ox gets the security level SLxz. The variable SLz is generic: it is substituted
by the actual security level of the subject when the rule is applied. The rule for
delete object for the deletion of objects is represented by reversing the partial
morphism of the rule new object. The rule new subject creates a subject Sz
on behalf of a user Uz. The new subject is attached to a security level SLy
that is lower in the hierarchy graph than the security level SLz of the user Ux.
This requirement is specified by the path from SLx to SLy, since edges in the
security lattice graph point from higher to lower levels.

For the application of rules we use the Single Pushout (SPO) approach to
graph transformations [EHK™97]. Formally, the application of a graph rule p :
L - R to a graph G is given by a total graph morphism m : L — G, called
match for p in G. The direct derivation G 2" H from G to the derived graph H

is given by the pushout of and m in TG (see the diagram below). Note that
the pushout exists, since the rule morphism is label preserving [PPEMST].

L—~R

Ezample 2 (Application of a graph rule). In Fig. Bl the left-hand side L of the
rule new subject occurs several times in G. In one possible match the node
Uz in L is associated to the node Us in G and the nodes SLx and SLy to the
specific security level H.

R
* new subject A #
() 6 ' (oo —hy

G H

L

security lattice security lattice

Fig. 3. Application of rule new subject.

292 M. Koch, L.V. Mancini, and F. Parisi-Presicce

For the specification of the ACL by graph transformations, negative appli-
cation conditions for rules are needed. A negative application condition (NAC)
for a rule p : L > R consists of a set A(p) of pairs (L, X), where the graph L
is a subgraph of X. The part X \ L represents a structure that must not occur
in a graph G for the rule to be applicable. In the figures, we depict (L, X) by
the graph X, where the subgraph L is drawn with solid and X \ L with dashed
lines. A rule p : L -~ R with a NAC (L, X) is applicable to G if L occurs in G
and it is not possible to extend L to X. Examples of rules with a NAC are the
ACL rules connect and give read in Fig.[H

Ezample 8 (Graph rules for the ACL). The type graph TG ac, in Fig.[M provides
the node types U, O and P. Just as in the LBAC model, a node of type U
represents a user and a node of type O an object. An edge between a user node
U and an object node O specifies that U is the owner of the object O. A node

Fig.4. The type graph for the ACL.

of type P represents a process. An edge of type R, W or X represents the read,
write or execute permission of an object to the world. The owner of the object
has always all the permissions for his/her objects and does not need the loops.
Some of the ACL graph rules are shown in Fig. Bl The rule new process starts
a new process on behalf of a user. To kill a process, the rule remove process
deletes the process node and its connection to the user. The rule create object
adds a new node Oz to the system, connecting it to the process node Pz that

create object

new process @
— -
(P)

remove process remove object
glve read

connect @ @
. —
‘ SR Rx
@ . remove read @

Fig. 5. Graph rules for the ACL model.

Foundations for a Graph—Based Approach to the Specification of AC Policies 293

has created the object and to the user node Uz to which the process belongs.
The rule connect connects a process of a user to an object of the user. The rule
has a NAC (indicated by the dashed edge between Pz and Oz on the left-hand
side of the rule) that forbids the application of the rule to processes and objects
of the user already connected. The rule give read gives the read permission
provided that it has not been granted already. Other rules such as give write
and give execution are not shown.

3 Security Policy Framework

This section introduces the framework for the specification of AC policies based
on graph transformations. The framework is called security policy framework and
consists of four components: The first component is a type graph that provides
the type information of the AC policy. The second component is a set of graph
rules specifying the policy rules that generate the graphs representing the states
of the system accepted by the AC policy. For some AC policies, it is meaningful
to restrict the set of system graphs constructed by the graph rules, since not all of
them represent valid states. Therefore, a security policy framework contains also
two sets of constraints that specify graphs that shall not be contained in any sys-
tem graph (negative constraints) and graphs that must be explicitly constructed
as parts of a system graph (positive constraints). In the actual implementation
of an AC policy, the constraints are redundant since the only acceptable states
are those explicitly built by the implemented rules. But when developing an AC
policy through successive refinement steps, or when comparing different policies,
or when trying to predict the behavior of the policy obtained by integrating two
different ones, it is useful to have the additional information provided by the
constraints. Furthermore, it is usually difficult to extract negative informations
from ”constructive” rules. Positive and negative constraints can be considered
as formal documentation of the initial requirements and the development pro-
cess of rules. Both positive and negative constraints are formally specified by
morphisms. Only their semantics distinguishes them.

Definition 1 (Negative and positive constraints). A constraint (positive
or negative) is given by a total graph morphism ¢: X — Y. A graph G satisfies
a positive (negative) constraint c if for each total graph morphism p : X — G
there exists (does not exist) a total graph morphism q : Y — G such that X 5

y4a=x"%4%aG.

Ezxample 4 (Constraints for LBAC and ACL). Figure Blshows two positive con-
straints and two negative constraints for the LBAC model. The morphisms for
the negative constraints are the identity on the graphs shown. The positive and
the negative constraint on the left-hand side require that objects always have a
security level (the positive constraint) and that there does not exist more than
one security level for an object (negative constraint). The right-hand side of the
figure specifies the same existence and uniqueness requirements for subjects.
The constraints for the ACL framework in Fig. [require that a process belong
to a unique user (the positive and the first negative constraint), that an object

294 M. Koch, L.V. Mancini, and F. Parisi-Presicce

positive constraints :
©— &) —= O—

negative constraints :

e

Fig. 6. Positive and negative constraints for LBAC.

does not belong to more than one user (the second negative one) and there is at
most one permission loop with the same permission attached to the same object
(the third negative one). Note that the third negative constraint represents three
negative constraints, one for R, one for W and one for X.

positive constraint:
(&) — ()

negative constraints:

oo S

Fig. 7. Positive and negative constraints for the ACL.

Definition 2 (Security Policy Framework). A security policy framework,
or just framework, is a tuple SP = (TG, (P,rp), Pos,Neg), where TG is a
type graph, the pair (P,rp) consists of a set of rule names and a total mapping
rp : P — |Rule(TG)| mapping each rule name to a rule L = R of TG -typed
graphs, Pos is a set of positive and Neg is a set of negative constraints.

The graphs that can be constructed by the rules of a framework represent the
system states possible within the policy model. These graphs are called system
graphs in the sequel.

A security policy framework is positive (resp. negative) coherent if all system
graphs satisfy the constraints in Pos (resp. Neg). It is coherent if it is both
positive and negative coherent.

The security policy framework for the LBAC policy consists of the type
graph in Fig. [[l and the negative and positive constraints in Fig. [8. The rule
names pi, ..., pg are mapped to the rules in Example[].

A security policy framework morphism f : SP; — SPs, or just framework
morphism, relates security policy frameworks by a total graph morphism frg :

Foundations for a Graph—Based Approach to the Specification of AC Policies 295

TG1 — TG4 between the type graphs and a mapping fp : P; — P» between the
sets of rule names. The mapping fp must preserve the behavior of rules as in
the sense that a rule name = can be mapped to a rule name fp(z) only if fp(z)
does on the renamed types everything which x does and possibly more. The set
of positive constraints in SP, can contain, in addition to Pos;, new positive
constraints and positive constraints of SP; extended w.r.t. new types. The set
of negative constraints in SP, may contain additional negative constraints on
new types, but must not impose new negative constraints on old types.

Definition 3 (Framework Morphism). A framework morphism between se-
curity policy frameworks SP; = (TG, (P;,rp,), Pos;, Neg;) fori=1,2 is a pair
= fra, fp): SP1 — SPs, where frg : TGy — TGy is a total graph morphism
and fp: Py — Py is a total mapping, so that Vi, (rp,(fr(p))) = rp, (p) for all
p € Pi, Posy C Vi, (Posa) and Vi, (Nega) C Neg;.

We provide now the categorical formalization by defining the category of
security policy frameworks and framework morphisms.

Definition 4 (Category of Security Policy Frameworks). The category
of security policy frameworks, denoted by SP, has as objects all security policy
frameworks and as morphisms all framework morphisms. For each framework
SP, idsp = (idrg,idp) is the identity and composition is defined component-
wise.

Proposition 1 (Initial Security Policy Framework). The initial object in
SP is given by the security policy framework SP; = (0, (0,7),0,0).

Security policy frameworks can be glued together using the standard cate-
gorical constructions.

Proposition 2 (Pushouts). The category SP has all pushouts.
By combining the previous two, we obtain the main result of this section.
Theorem 1 (Colimits). The category SP is finitely cocomplete.

A security policy framework SP = (TG, (P,rp), Pos, Neg) can be changed
by modifying its components, that is, the extension or reduction of the type
graph, the addition/removal of a graph rule to/from P, the addition/removal
of a positive constraint to/from Pos and the addition/removal of a negative
constraint to/from Neg. A framework morphism f : SP; — SP, describes the
change of the framework SP; to the framework SP», but also from SP», to SP;.
We define an evolution as a sequence of framework morphisms in the category
SP that can be travelled in both directions.

Definition 5 (evolution). An evolution of a framework SP to a framework
SP’ is a sequence e = (SPySP,...SP,_1SP,) of frameworks such that SPy =
SP, SP, = SP’ and, for each i = 0,...,n — 1, there is a framework morphism
mlf :SP;, — SPiyy orml:SP — SP;.

296 M. Koch, L.V. Mancini, and F. Parisi-Presicce

The evolution of a security policy framework yields a new security policy
framework that reflects the desired changes. The changes, however, do not ensure
generally that the new security policy framework is coherent. From a semantical
point of view, this problem can be solved by considering the full sub-category
SP° of SP that contains only coherent security policy frameworks. Evolution
is possible only in this sub-category. From an operational point of view, we
can solve the problem by using a mechanical construction originally introduced
in [HW95]. The construction manipulates the rules of a framework by adding
application conditions to ensure that the rules do not create graphs that do not
satisfy the constraints. A methodology for generating a coherent security policy
framework is presented in [KMPPOObIKMPP(0a].

4 Integration of Security Policy Frameworks by Pushouts

Integration is concerned with the merging of AC policies. A merge is necessary
on the syntactical level, i.e. a merge of the security policy frameworks, and on
the semantical level, i.e. the merge of the system graphs representing the state at
merge time. The merge on the semantical level is what distinguishes an evolution
from an integration: evolution is expressed syntactically by considering only the
security policy frameworks, integration includes semantical changes, too. The
integration of two AC policies on the syntactical level is a pushout of the security
policy frameworks in the category SPZ. Two security policy frameworks SP;
and SP, are related by an auxiliary framework SF, that identifies the common
parts (types and rules) in both frameworks; the actual integration is expressed
by framework morphisms f; : SPy — SP; and fy : SPy — SP». The pushout
of f1 and fo in SP integrates the frameworks SP; and SP, in a new security
policy framework SP called the integrated framework.

Throughout this section, the integration of the LBAC framework with the
ACL framework (both introduced in Section [3) is used as an example.

Ezample 5 (Pushout integration of the ACL and LBAC frameworks). The type
graph in the middle of Fig. [§ shows the types common to ACL and LBAC.
The U and the O types are in common and the type P (processes in ACL) and
the type S (subjects in LBAC) coincide. The edge between the U and the P
(resp. S) node is a common part as well. The pushout of the two type graphs
is the type graph at the bottom of Fig. 8l The pushout identifies the P and S
node to a common type P. All rules are kept in the integrated security policy
framework, where their graphs are now typed over the integrated type graph.
The integrated policy framework contains the two positive constraints of the
LBAC model (now typed over the integrated type graph) and the positive ACL
constraint. The integrated framework has no negative constraints, since there
are (after re-typing) no common negative constraints in ACL and LBAC.

An important integration aspect is the preservation of coherence: if the frame-
works SP; and SP, are coherent, is SP? Generally, this is not the case. The

2 The integration concepts of the paper can be easily generalized to an integration of
several frameworks because of the existence of (finite) colimits in SP.

Foundations for a Graph—Based Approach to the Specification of AC Policies 297

type graph for ACL common types type graph for LBAC

U = o)

G.@ W © |— (str—(0)
9 4
\ integrated type graph /

O

B < Term
- QD

Fig. 8. Integrated type graph for the combined LBAC and ACL security model.

integrated framework for the ACL and the LBAC frameworks of the previous
example contains a positive constraint that requires a security level for each
node of type P (stemming from the identification of the LBAC type S and the
ACL type P). This requirement can be destroyed by the ACL rule new process.
Negative constraints, however, are preserved by the pushout.

Proposition 3 (Preservation of negative coherence). Given framework
morphisms f1 : SPy — SPy and fo : SPy — SP; so that SP; and SP; are
coherent, the pushout object SP = (T'G™, (P™ rpint), Pos™, Neg™) of fi
and fy in SP is coherent w.r.t. the set of negative constraints Neg'™.

Coherence w.r.t. positive constraints is generally not preserved by the
pushout construction as the counterexample above shows. The reason for in-
coherence w.r.t. positive constraints, however, can be reduced to the parts of
positive constraints referring to common types. Coherence of positive constraints
referring to types occuring only in SP; or only in SP, is preserved.

Proposition 4 (Preservation of positive coherence). Given framework
morphisms f1 : SPy — SPy and fy : SPy — SPy with SP; and SP, coher-
ent, the pushout SP = (TG (P™ rpin), Pos'™, Neg™) of fi and fy in SP
is incoherent if and only if SP is incoherent w.r.t. positive constraints of Pos'™
containing types in TGy.

After merging the AC policies on the syntactical level to an integrated SP,
the AC policies are merged on the semantical level by a pushout of the system
graphs G of SP; and G5 of SP; representing the system states at merge time.
The merge of the system graphs must yield a graph typed over the integrated
type graph TG™ of SP.

Ezxample 6 (Integration of LBAC and ACL System Graphs). Figure 0 shows a
system graph for the ACL framework and the LBAC framework. The auxiliary
graph Gy contains the user U1l (may be working for both companies) and the
objects O1 and O2 (may be files already shared before the merge). The integrated
system graph at the bottom of Fig.[d contains features of both frameworks.

298 M. Koch, L.V. Mancini, and F. Parisi-Presicce

system graph for the ACL model system graph for the LBAC model

Fig.9. Integrated system graph for the combined LBAC and ACL framework.

The integration of the system graphs does not ensure that the integrated
system graph satisfies the constraints of the integrated framework SP. There are
two possible solutions: first, the integrated system graph is adapted to satisfy
the constraints. In the example, the integrated system graph in Fig. [could
be modified by connecting objects and processes without security level with
the security lattice graph. Second, the set of constraints can be changed by, for
instance, removing the unsatisfied constraints. This is meaningful, if one policy is
preferred and the constraint is from the other policy. In the example, the LBAC
constraint for security levels could be removed if the ACL policy is preferred.

5 Solving Rule Conflicts by Meta Policies

In this section, we assume that two security policies are integrated by a pushout
in SP for the frameworks and a pushout in TG for the system graphs. Even
if the integrated system graph is modified to be coherent w.r.t. the constraints
of the integrated framework, there may be rules in the integrated framework,
coming from SP; and SPs, respectively, that are applicable to the same part of
the integrated system graph. If the rules specify two conflicting actions specific
to the policy, we call such a situation a rule conflict and denote by CR(SP) the
set of conflicting rule pairs. For instance, the LBAC rule new object and the
ACL rule create object are in conflict, since both are applicable to the user

Foundations for a Graph—Based Approach to the Specification of AC Policies 299

U1 in the integrated system graph in Fig.[d The rule new object would create
an object with a security level, the rule create object an object without one.
Which rule shall be applied in this case? Several strategies, called meta policies,
are possible to resolve conflicts between rules. A meta policy is specified by
mappings, on the rule names, that define a set of rules intended for addition or
deletion from the integrated framework SP (the ”gluing” of SP; and SPs).

Definition 6 (meta policy). A meta policy MP = (strategy;)icr for SP
is an I-indexed set of partial mappings strategy; : D; — |Rules| from a set
D; C P, U P, to the set of rules |Rules|.

A mapping strategy : D — |Rules| of a meta policy changes the framework
S P with respect to the rules by deleting all rules from SP that occur in D and
by adding the rules in the image strategy(D). After a framework is modified for
all mappings in a meta policy M P, it is called closed under M P.

Definition 7 (closure under meta policy). Let SP be the integrated frame-
work for SPy and SPy and M P = (strategy; : D; — |Rules|);e; a meta policy
for SP. The framework SPMP = (TG™ (PMF rpup), Pos™, Negi™) closed
under M P consists of the set of rules names

pMP _ pint\ U D, U U dom(strategy;).
icl i€l

The mapping rpur : PMP — |Rules| is defined for p € P™ asrpup = rpin(p)
and for p & P™ as rpmre(p) = strategy;(p), where p € dom(strategy;).

For the following examples we introduce the weakrule p2(p1) of a rule ps w.r.t.
a rule p;. The weakrule is derived from rule ps by adding a negative application
condition W AP (p2,p1), that allows the application of the rule ps only if the rule
p1 is not applicable. The application condition W AP(py,p1) is constructed by
extending the left-hand side Ly of py to Ly U Lo.

Definition 8 (weak rule). Given two rules p1 : Lq N Ry and py - Ly 2
Rs, the weak condition for ps w.r.t. p1, denoted by WAP(ps,p1), is the pair
(Lo, L1 U Ls). The weakrule pa(p1) of pa w.r.t. p1 is the rule ps extended by the
negative application condition W AP (ps, p1).

Ezample 7 (weak rule). Figure [0l shows the example of the ACL rule create
object and the LBAC rule new object (note that the rule LBAC rule is typed
over the integrated type graph, with a Pz node instead of a Sz node). The
weak rule for create object w.r.t. new object has a NAC that forbids the
application to a process with a security level. Therefore, the weak rule for create
object is only applicable to processes coming from the ACL model and without
a counterpart in the LBAC model. The weak rule for new object w.r.t. create
object has a NAC that forbids the application if a user is connected to the
process. Since each user is connected to a process, the rule is not applicable.

300 M. Koch, L.V. Mancini, and F. Parisi-Presicce

LBAC ACL

new object create object @ @
U o) || @)

weak "new object” w.r.t. "create object” weak "create object” w.r.t. "new object”

e) e (0| @ — @@@
)

Fig. 10. The weak rule for new object and create object.

The weak rule ensures that the less important (minor) rule of SP; is applied
only if the more important (major) rule of SP; is not applicable.

Lemma 1. The weak rule pa(p1) is applicable at a match m : Ly — G if and
only if the morphism m cannot be extended to a match for py.

We introduce three possible meta policies, called radical, weakRadical and
static. The meta policies radical and weakRadical choose a major SP; and a
minor policy SP,. The meta policy radical solves the problem of conflicting rules
globally by selecting the rules of SP; and deleting the rules of SP,. It consists
of the mapping killMinor : P, — |Rules| defined as identity for the rules of
S P, not in a conflict with a rule in SP;.

undefined , if there is (p1,p2) € CR(SP)

kill Minor(p2) = {p2 ,otherwise

The effect of the meta policy radical is that SP; will ”survive” during the
subsequent evolution of the system, whereas the framework SP, ”dies”. The
meta policy weakRadical keeps the conflicting rule of SP;, extended by all
NACs of the weak rule w.r.t. conflicting rules, and consists of the mapping
weakMinor : P, — |Rules| defined by

weakMinor(ps) = pa with weak condition W AP (p1,p2) V(p1,p2) € CR(SP)

To non-conflict points, the weakened rule ps is still applicable so that the part
of the system graph where the rule py is applicable is only reduced.

Whereas the meta policies radical and weakRadical favor the major fram-
work S Py, the choice in the meta policy static depends on the conflicting rule
pair. The meta policy static consists of the two mappings weakMinor : Dy —
|Rules| as above with a domain Dy C P, and weakMajor : D1 — |Rules| with
D, C P, similar to the mapping weakMinor, defined by

weakMagjor(p) = p1 with weak condition WAP(p2,p1) V(p1,p2) € CR(SP)

The meta policy weakRadical is a special case of the meta policy static, where
D2:P2 andD1 ZQ)

Foundations for a Graph—Based Approach to the Specification of AC Policies 301

Proposition 5 (conflictfreenes). The closure of the framework SP under the
metapolicies radical or weakRadical is conflictfree. If D1 N Dy = () and D1 U
Dy ={p,p'|(p,p") € CR(SP)}, then the closure under static is conflictfree.

6 Concluding Remarks

We have presented a formalism to specify AC policies. States are represented by
graphs and their evolution by graph transformations. A policy is formalized by
four components: a type graph, positive and negative constraints (a declarative
way of describing what is wanted and what is forbidden) and a set of rules
(an operational way of describing what can be constructed). The change over
time of a policy can described in terms of sequences of framework morphisms,
corresponding to step-by-step addition/deletion of rules and constraints.

We have also discussed the effect of integrating two policies using a pushout
in the category of policy frameworks and framework morphisms. The problem of
dealing with inconsistencies caused by conflicts between a rule of one policy and
a constraint of the other policy has been addressed in part elsewhere [KMPPOOD!
KMPP004], where it is also shown the adequacy of this framework to represent
different Access Control policies.

Besides the new results in Sections 3 and 4, we have introduced the notion
of metapolicy and shown that three natural ones transform a policy resulting
from an integration into a conflict-free policy. The choice of the appropriate
meta policy may depend on the specific application domain of the particular AC
model. Among the problems still under investigation are the transition from a
system using one policy to a system using another policy.

References

[BAVS00] P. Bonatti, S. De Capitani di Vimercati, and P. Samarati. A modular
approach to composing access control policies. In Proc. of the 7th ACM
Conference on Computer and Communication Security. ACM, November
2000.

[CELP96] A. Corradini, H. Ehrig, M. Lowe, and J. Padberg. The category of typed
graph grammars and their adjunction with categories of derivations. In
5th Int. Workshop on Graph Grammars and their Application to Com-
puter Science, number 1073 in LNCS, pages 56-74. Springer, 1996.

[EHK197) H. Ehrig, R. Heckel, M. Korff, M. Lowe, L. Ribeiro, A. Wagner, and
A. Corradini. Handbook of Graph Grammars and Computing by Graph
Transformations. Vol. I: Foundations, chapter Algebraic Approaches to
Graph Transformation Part II: Single Pushout Approach and Compari-
son with Double Pushout Approach. In Rozenberg [Roz97], 1997.

[GRPPS98] M. Grofie-Rhode, F. Parisi-Presicce, and M. Simeoni. Spatial and Tem-
poral Refinement of Typed Graph Transformation Systems. In Proc. of
MFCS’98, number 1450 in LNCS, pages 553-561. Springer, 1998.

[HW95] R. Heckel and A. Wagner. Ensuring consistency of conditional graph
grammars - a constructive approach. In Proc. SEGRAGRA’95 Graph
Rewriting and Computation, number 2. Electronic Notes of TCS, 1995.
http://www.elsevier.nl/locate/entcs/volume2.html.

302 M. Koch, L.V. Mancini, and F. Parisi-Presicce

[KMPP00a)

[KMPPOOb)

[PPEMS7)

[Roz97]
[San93]
[San9g|

[SS94]

M. Koch, L. V. Mancini, and F. Parisi-Presicce. On the specification
and evolution of access control policies. Technical Report SI-2000/05,
Dip.Scienze dell'Informazione, Uni. Roma La Sapienza, May 2000.

M. Koch, L.V. Mancini, and F. Parisi-Presicce. A Formal Model for
Role-Based Access Control using Graph Transformation. In F.Cuppens,
Y.Deswarte, D.Gollmann, and M.Waidner, editors, Proc. of the 6th Eu-
ropean Symposium on Research in Computer Security (ESORICS 2000),
number 1895 in LNCS, pages 122-139. Springer, 2000.

F. Parisi-Presicce, H. Ehrig, and U. Montanari. Graph Rewriting with
unification and composition. In H. Ehrig, M. Nagl, G. Rozenberg, and
A. Rosenfeld, editors, Int. Workshop on Graph Grammars and their Ap-
plication to Computer Science, number 291 in LNCS, pages 496-524.
Springer, 1987.

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformations. Vol. I: Foundations. World Scientific, 1997.

R. S. Sandhu. Lattice-based access control models. IEEE Computer,
26(11):9-19, 1993.

R. S. Sandhu. Role-Based Access Control. In Advances in Computers,
volume 46. Academic Press, 1998.

R.S. Sandhu and P. Samarati. Access Control: Principles and Practice.
IEEE Communication Magazine, pages 40—48, 1994.

	Introduction
	Graph Transformations
	Security Policy Framework
	Integration of Security Policy Frameworks by Pushouts
	Solving Rule Conflicts by Meta Policies
	Concluding Remarks

