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Abstract. In this paper we present an algorithm for eÆciently comput-

ing the minimum cost of reaching a goal state in the model of Uniformly

Priced Timed Automata (UPTA). This model can be seen as a submodel

of the recently suggested model of linearly priced timed automata, which

extends timed automata with prices on both locations and transitions.

The presented algorithm is based on a symbolic semantics of UTPA, and

an eÆcient representation and operations based on di�erence bound ma-

trices. In analogy with Dijkstra's shortest path algorithm, we show that

the search order of the algorithm can be chosen such that the number of

symbolic states explored by the algorithm is optimal, in the sense that

the number of explored states can not be reduced by any other search

order. We also present a number of techniques inspired by branch-and-

bound algorithms which can be used for limiting the search space and

for quickly �nding near-optimal solutions.
The algorithm has been implemented in the veri�cation tool Uppaal.

When applied on a number of experiments the presented techniques re-

duced the explored state-space with up to 90%.

1 Introduction

Recently, formal veri�cation tools for real-time and hybrid systems, such as Up-
paal [LPY97], Kronos [BDM+98] and HyTech [HHWT97], have been applied
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to solve realistic scheduling problems [Feh99b,HLP00,NY99]. The basic com-
mon idea of these works is to reformulate a scheduling problem to a reachability
problem that can be solved by veri�cation tools. In this approach, the automata
based modeling languages of the veri�cation tools serve as the input language in
which the scheduling problem is described. These modeling languages have been
found to be very well-suited in this respect, as they allow for easy and 
exible
modeling of systems consisting of several parallel components that interact in a
time-critical manner and constrain the behavior of each other in a multitude of
ways.

A main di�erence between veri�cation algorithms and dedicated scheduling
algorithms is in the way they search a state-space to �nd solutions. Scheduling
algorithms are often designed to �nd optimal (or near optimal) solutions and
are therefore based on techniques such as branch-and-bound to identify and
prune parts of the states-space that are guaranteed to not contain any optimal
solutions. In contrast, veri�cation algorithms do normally not support any notion
of optimality and are designed to explore the entire state-space as eÆciently as
possible. The veri�cation algorithms that do support notions of optimality are
restricted to simple trace properties such as shortest trace [LPY95], or shortest
accumulated delay in trace [NTY00].

In this paper we aim at reducing the gap between scheduling and veri�cation
algorithms by adopting a number of techniques used in scheduling algorithms
in the veri�cation tool Uppaal. In doing so, we study the problem of eÆciently
computing the minimal cost of reaching a goal state in the model of Uniformly
Priced Timed Automata (UPTA). This model can be seen as a restricted version
of the recently suggested model of Linearly Priced Timed Automata (LPTA)
[BFH+01], which extends the model of timed automata with prices on all tran-
sitions and locations. In these models, the cost of taking an action transition is
the price associated with the transition, and the cost of delaying d time units in
a location is d �p, where p is the price associated with the location. The cost of a
trace is simply the accumulated sum of costs of its delay and action transitions.
The objective is to determine the minimum cost of traces ending in a goal state.

The in�nite state-spaces of timed automata models necessitates the use of
symbolic techniques in order to simultaneously handle sets of states (so-called
symbolic states). For pure reachability analysis, tools like Uppaal and Kro-

nos use symbolic states of the form (l; Z), where l is a location of the timed
automaton and Z � R

C1 is a convex set of clock valuations called a zone. For
the computation of minimum costs of reaching goal states, we suggest the use of
symbolic cost states of the form (l; C), where C : RC ! (R�0 [ f1g) is a cost
function mapping clock valuations to real valued costs or 1. The intention is
that, whenever C(u) < 1, reachability of the symbolic cost state (l; C) should
ensure that the state (l; u) is reachable with cost C(u).

Using the above notion of symbolic cost states, an abstract algorithm for
computing the minimum cost of reaching a goal state satisfying ' of a uniformly

1
C denotes the set of clocks of the timed automata, andRC denotes the set of functions

from C to R�0.
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Cost := 1

Passed := ;

Waiting := f(l0; C0)g

while Waiting 6= ; do

select (l; C) from Waiting

if (l; C) j= ' and min(C) < Cost then

Cost := min(C)

if for all (l; C 0) in Passed: C 0
6v C then

add (l; C) to Passed

for all (m;D) such that (l; C); (m;D): add (m;D) toWaiting

return Cost

Fig. 1. Abstract Algorithm for the Minimal-Cost Reachability Problem.

priced timed automaton is shown in Fig. 1. The algorithm is similar to a stan-
dard state-space traversal algorithm that uses two data-structures Waiting and
Passed to store states waiting to be examined, and states already explored, re-
spectively. Initially, Passed is empty and Waiting holds an initial (symbolic
cost) state. In each iteration, the algorithm proceeds by selecting a state (l; C)
fromWaiting, checking that none of the previously explored states (l; C 0) has
a \smaller" cost function, written C 0 v C2, and if this is the case, adds it to
Passed and its successors toWaiting. In addition the algorithm uses the global
variable Cost, which is initially set to 1 and updated whenever a goal state is
found that can be reached with a lower cost than the current value of Cost. The
algorithm terminates when Waiting is empty, i.e. when no further states are
left to be examined. Thus, the algorithm always searches the entire state-space
of the analyzed automaton.

In [BFH+01] an algorithm for computing the minimal cost of reaching desig-
nated goal states was given for the full model of LPTA. However, the algorithm
is based on a cost-extended version of regions, and is thus guaranteed to be
extremely ineÆcient and highly sensitive to the size of constants used in the
models. As the �rst contribution of this paper, we give for the subclass of UPTA
an eÆcient zone representation of symbolic cost states based on Di�erence Bound
Matrices [Dil89], and give all the necessary symbolic operators needed to imple-
ment the algorithm. As the second contribution we show that, in analogy with
Dijkstra's shortest path algorithm, if the algorithm is modi�ed to always select
from Waiting the (symbolic cost) state with the smallest minimum cost, the
state-space exploration may terminate as soon as a goal state is explored. This
means that we can solve the minimal-cost reachability problem without neces-
sarily searching the entire state-space of the analyzed automaton. In fact, it can
even be shown that the resulting algorithm is optimal in the sense that choos-
ing to search a symbolic cost state with non-minimal minimum cost can never
reduce the number of symbolic cost states explored.

The third contribution of this paper is a number of techniques inspired by
branch-and-bound algorithms [AC91] that have been adopted in making the

2 Formally C 0
v C i� 8u:C 0(u) � C(u).



EÆcient Guiding Towards Cost-Optimality in UPPAAL 177

algorithm even more useful. These techniques are particularly useful for limiting
the search space and for quickly �nding solutions near to the minimum cost of
reaching a goal state. To support this claim, we have implemented the algorithm
in an experimental version of the veri�cation tool Uppaal and applied it to
a wide variety of examples. Our experimental �ndings indicate that in some
cases as much as 90% of the state-space searched in ordinary breadth-�rst order
can be avoided by combining the techniques presented in this paper. Moreover,
the techniques have allowed pure reachability analysis to be performed in cases
which were previously unsuccessful.

The rest of this paper is organized as follows: In Section 2 we formally de�ne
the model of uniformly priced timed automata and give the symbolic semantics.
In Section 3 we present the basic algorithm and the branch-and-bound inspired
techniques. The experiments are presented in Section 4. We conclude the paper
in Section 5.

2 Uniformly Priced Timed Automata

In this section linearly priced timed automata are formalized and their seman-
tics are de�ned. The de�nitions given here resemble those of [BFH+01], except
that the symbolic semantics uses cost functions whereas [BFH+01] uses priced
regions. Zone-based data-structures for compact representation and eÆcient ma-
nipulation of cost functions are provided for the class of uniformly priced timed
automata. It is simple to extend linearly priced timed automata to networks of
linearly priced timed automata, but for brevity parallel composition is omitted
here.

2.1 Linearly Priced Timed Automata

Formally, linearly priced timed automata (LPTA) are timed automata with
prices on locations and transitions. We also denote prices on locations as rates.
Let C be a set of clocks. Then B(C ) is the set of formulas that are conjunc-
tions of atomic constraints of the form x ./ n and x � y ./ n for x; y 2 C ,
./ 2 f<;�;=;�; >g and n being a natural number. Elements of B(C ) are called
clock constrains over C . P(C ) denotes the power set of C .

De�nition 1 (Linearly Priced Timed Automata). A linearly priced timed
automaton A over clocks C and actions Act is a tuple (L; l0; E; I; P ) where L is
a �nite set of locations, l0 is the initial location, E � L�B(C )�Act�P(C )�L

is the set of edges, where an edge contains a source, a guard, an action, a set
of clocks to be reset, and a target, I : L! B(C ) assigns invariants to locations,
and P : (L [ E) ! N assign prices to both locations and edges. In the case of

(l; g; a; r; l0) 2 E, we write l
g;a;r
���! l0.

Clock values are represented as functions called clock valuations from C to
the non-negative reals R�0. We denote by RC the set of clock valuations for C .
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Fig. 2. An example of an LPTA with two clocks, x and y. The number in the
states is the rate of the state and the number on the transitions is the cost of
taking the transition. A minimal trace to the rightmost state needs to visit the
initial state twice, and has cost 14.

De�nition 2 (Semantics). The semantics of a linearly priced timed automa-
ton A is de�ned as a labeled transition system with the state-space L�RC with
initial state (l0; u0) (where u0 assigns zero to all clocks in C ) and with the fol-
lowing transition relation:

{ (l; u)
�(d);p
���! (l; u+ d) if 80 � e � d : u+ e 2 I(l), and p = d � P (l),

{ (l; u)
a;p
��! (l0; u0) if there exists g, r s.t. l

g;a;r
���! l0, u 2 g, u0 = u[r 7! 0], and

p = P ((l; g; a; r; l0)),

where for d 2 R�0, u + d maps each clock x in C to the value u(x) + d, and
u[r 7! 0] denotes the clock valuation which maps each clock in r to the value 0
and agrees with u over C n r.

The transitions are decorated with a delay-quantity or an action, together with
the cost of the transition. The cost of an execution trace is simply the accumu-
lated cost of all transitions in the trace, see Fig. 2.

De�nition 3 (Cost). Let � = (l0; u0)
a1;p1
���! (l1; u1) � � �

an;pn
���! (ln; un) be a

�nite execution trace. The cost of �, cost(�), is the sum �n
i=1pi. For a given

state (l; u) the minimum cost mincost(l; u) of reaching the state, is the in�mum
of the costs of �nite traces ending in (l; u). For a given location l the minimum
cost mincost(l) of reaching the location, is the in�mum of the costs of �nite
traces ending in (l; u) for some u.

2.2 Cost Functions

The semantics of LPTA yields an uncountable state-space and is therefore not
suited for state-space exploration algorithms. To overcome this problem, the al-
gorithm in Fig. 1 uses symbolic cost states, quite similar to how timed automata
model checkers like Uppaal use symbolic states.

Typically, symbolic states are pairs on the form (l; Z), where Z � R
C is a

convex set of clock valuations, called a zone, representable by Di�erence Bound
Matrices (DBMs) [Dil89]. The operations needed for forward state-space ex-
ploration can be eÆciently implemented using the DBM data-structure. In the
priced setting we must in addition represent the costs with which individual
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Table 1. Common operations on cost functions.

Operation Cost Function (RC
! R�0)

Delay delay(C; p) : u 7! inffC(v) + p � d j d 2R�0 ^ v+ d = ug

Reset r(C) : u 7! inffC(v) j u = r(v)g

Satisfaction g(C) : u 7! minfC(v) j v j= g ^ u = vg

Increment C + k : u 7! C(u) + k; k 2 N

Comparison D v C
def
, 8u : D(u) � C(u)

In�mum min(C) = inffC(u) j u 2RC
g

states are reached. For this we suggest the use of symbolic cost states, (l; C),
where C is a cost function mapping clock valuations to real valued costs. Thus,
within a symbolic cost state (l; C), the cost of a state (l; u) is given by C(u).

De�nition 4 (Cost Function). A cost function C : RC! R�0[f1g assigns
to each clock valuation, u, a positive real valued cost, c, or in�nity. The support
sup(C) = fu j C(u) <1g is the set of valuations mapped to a �nite cost.

Table 1 summarizes several operations that are used by the symbolic semantics
and the algorithm in Fig. 1. In terms of the support of a cost function, the
operations behave exactly as on zones; e.g. sup(r(C)) = r(sup(C)). The opera-
tions e�ect on the cost value re
ect the intent to compute the minimum cost of
reaching a state, e.g., r(C)(u) is the in�mum of C(v) for all v that reset to u.

2.3 Symbolic Semantics

The symbolic semantics for LPTA is very similar to the common zone based
symbolic semantics used for timed automata.

De�nition 5 (Symbolic Semantics). Let A = (L; l0; E; I; P ) be a linearly
priced timed automaton. The symbolic semantics is de�ned as a labelled transi-
tion system over symbolic cost states on the form (l; C), l being a location and
C a cost function with the transition relation:

{ (l; C)
�
�!

�
l; I(l)

�
delay

�
I(l)(C); P (l)

���
,

{ (l; C)
a
�!

�
l0; I(l)

�
r(g(C))

�
+ p

�
i� l

g;a;r
���! l0, and p = P ((l; g; a; r; l0)).

The initial state is (l0; C0) where sup(C0) = fu0g and C0(u0) = 0.

Notice that the support of any cost function reachable by the symbolic semantics
is a zone.

Lemma 1. Given LPTA A, for each trace � of A that ends in state (l; u), there
exists a symbolic trace � of A, that ends up in a symbolic cost state (l; C), such
that C(u) = cost(�).
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Lemma 2. Whenever (l; C) is a reachable symbolic state and u 2 sup(C), then
mincost(l; u) � C(u) for all u.

Theorem 1. mincost(l) = minfmin(C) j (l; C) is reachableg

Theorem 1 ensures that the algorithm in Fig. 1 indeed does �nd the minimum
cost, but since the state-space is still in�nite there is no guarantee that the algo-
rithm ever terminates. For zone based timed automata model checkers, termina-
tion is ensured by normalizing all zones with respect to a maximum constant M
[Rok93], but for LPTA ensuring termination also depends on the representation
of cost functions.

2.4 Representing Cost Functions

As stated in the introduction, we provide an eÆcient implementation of cost
functions for the class of Uniformly Priced Timed Automata (UPTA).

De�nition 6 (Uniformly Priced Timed Automata). An uniformly priced
timed automaton is an LPTA where all locations have the same rate. We refer
to this rate as the rate of the UPTA.

Lemma 3. Any UPTA A with positive rate can be translated into an UPTA B

with rate 1 such that mincost(l) in A is identical to mincost(l) in B.

Thus, in order to �nd the in�mum cost of reaching a satisfying state in UPTA,
we only need to be able to handle rate zero and rate one.

In case of rate zero, all symbolic states reachable by the symbolic semantics
have very simple cost functions: The support is mapped to the same integer
(because the cost is 0 in the initial state and only modi�ed by the increment
operation). This means that a cost function C can be represented as a pair (Z; c),
where Z is a zone and c an integer, s.t. C(u) = c when u 2 Z and 1 otherwise.
Delay, reset and satisfaction are easily implementable for zones using DBMs.
Increment is a matter of incrementing c and a comparison (Z1; c1) v (Z2; c2)
reduces to Z2 � Z1 ^ c1 � c2. Termination is ensured by normalizing all zones
with respect to a maximum constant M .

In case of rate one, the idea is to use zones over C [fÆg, where Æ is an addi-
tional clock keeping track of the cost, s.t. every clock valuation u is associated
with exactly one cost Z(u) in zone Z3. Then, C(u) = c i� u[Æ 7! c] 2 Z. This
is possible because the continuous cost advances at the same rate as time. De-
lay, reset, satisfaction and in�mum are supported directly by DBMs. Increment
C + c translates to Z[Æ 7! Æ + k] = fu[Æ 7! u(Æ) + k] j u 2 Zg and is also re-
alizable using DBMs. For comparison between symbolic cost states, notice that
Z2 � Z1 ) Z1 v Z2, whereas the implication in the other direction does not
hold in general, see Fig. 3. However, it follows from the following Lemma 4 that
comparisons can still be reduced to set inclusion provided the zone is extended
in the Æ dimension, see Fig. 3.
3 We de�ne Z(u) to be 1 if u is not in Z.
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x

Æ

Z

Z1

Z
y

2

Zy

Z2

Fig. 3. Let x be a clock and let Æ be the cost. In the �gure, Z v Z1 v Z2, but
only Z1 is a subset of Z. The ()y operation removes the upper bound on Æ, hence

Z
y
2 � Zy , Z v Z2.

Lemma 4. Let Zy = fu[Æ 7! u(Æ) + d] j u 2 Z ^ d 2 R�0g. Then Z1 v Z2 ,

Z
y
2 � Z

y
1 .

It is straightforward to implement the ()y-operation on DBMs. However, a useful
property of the ()y-operation is, that its e�ect on zones can be obtained without

implementing the operation. Let (l0; Z
y
0), where Z0 is the zone encoding C0,

be the initial symbolic state. Then Z = Zy for any reachable state (l; Z) |
intuitively because Æ is never reset and no guards or invariants depend on Æ.

Termination is ensured if all clocks except for Æ are normalized with respect
to a maximum constant M . It is important that normalization never touches
Æ. With this modi�cation, the algorithm in Fig. 1 will essentially encounter
the same states as the traditional forward state-space exploration algorithm for
timed automata, except for the addition of Æ.

3 Improving the State-Space Exploration

As mentioned, the major drawback of the algorithm in Fig. 1 is that it requires
the entire state-space to be searched before the minimum cost of reaching a goal
state can be declared. In this section we will discuss a number of possibilities for
improving this in some cases.

3.1 Minimum Cost Order

In realizing the algorithm of Fig. 1, and in analogy with Dijkstra's algorithm for
�nding the shortest path in a directed weighted graph, we may choose always to
select a (symbolic cost) state (l; C) fromWaiting for which C has the smallest
minimum cost. With this choice, we may terminate the algorithm as soon as a
goal state is selected fromWaiting. We will refer the search order arising from
this strategy as the Minimum Cost order (MC order).

Lemma 5. Using the MC order, an optimal solution is found by the algorithm
in Fig. 1 when a goal state is selected from Waiting the �rst time.
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When applying the MC order, the algorithm in Fig. 1 can be simpli�ed since the
variable Cost is not needed any more. Again in analogy with Dijkstra's shortest
path algorithm, the MC ordering �nds the minimumcost of reaching a goal state
with guarantee of its optimality, in a manner which requires exploration of a
minimum number of symbolic cost states.

Lemma 6. Using the algorithm in Fig. 1, it can never reduce the number of
explored states to prefer exploration of a symbolic cost state of Waiting with
non-minimal minimum cost.

In situations whenWaiting contains more than just one symbolic cost state with
smallest minimum cost, the MC order does not o�er any indication as to which
one to explore �rst. In fact, for exploration of the symbolic state-space for timed
automata without cost, we do not know of a de�nite strategy for choosing a state
from Waiting such that the fewest number of symbolic states are generated.
However, any improvements gained with respect to the search-order strategy for
the state-space exploration of timed automata will be directly applicable in our
setting with respect to the strategy for choosing between symbolic cost states
with same minimum cost.

3.2 Using Estimates of the Remaining Cost

From a given state one often has an idea about the cost remaining in order to
reach a goal state. In branch-and-bound algorithms this information is used both
to delete states and to search the most promising states �rst. Using information
about the remaining cost can also decrease the number of states searched before
an optimal solution is reached.

For a state (l; u) let rem((l; u)) be the minimumcost of reaching a goal state
from that state. In general we cannot expect to know exactly what the remaining
cost of a state is. We can instead use an estimate of the remaining cost as long
as the estimate does not exceed the actual cost. For a symbolic cost state (l; C)
we require that Rem(l; C) satis�es Rem(l; C) � inffrem((l; u)) j u 2 sup(C)g,
i.e. Rem(l; C) o�ers a lower bound on the remaining cost of all the states with
location l and clock valuation within the support of C.

Combining the minimumcost min(C) of a symbolic cost state (l; C) with the
estimate of the remaining cost Rem(l; C), we can base the MC order on the sum
of min(C) and Rem(l; C). Since min(C) +Rem(l; C) is smaller than the actual
cost of reaching a goal state, the �rst goal state to be explored is guaranteed to
have optimal cost. We call this the MC+ order but it is also known as Least-
Lower-Bound order. In Section 4 we will show that even simple estimates of the
remaining cost can lead to large improvements in the number of states searched
to �nd the minimum cost of reaching a goal state.

One way to obtain a lower bound is for the user to specify an initial estimate
and annotate each transition with updates of the estimate. In this case it is the
responsibility of the user to guarantee that the estimate is actually a lower bound
in order to ensure that the optimal solution is not deleted. This also allows the
user to apply her understanding and intuition about the system.
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3.3 Heuristics and Bounding

It is often useful to quickly obtain an upper bound on the cost instead of waiting
for the minimumcost. In particular, this is the case when faced with a state-space
too big for the MC order to handle. As will be shown in Section 4, the techniques
described here for altering the search order using heuristics are very useful. In
addition, techniques from branch-and-bound algorithms are useful for improving
the upper bound once it has been found. Applying knowledge about the goal
state has proven useful in improving the state-space exploration [RE99,HLP00],
either by changing the search order from the standard depth or breadth-�rst, or
by leaving out parts of the state-space.

To implement the MC order, a suitable data-structure for Waiting would
be a priority queue where the priority is the minimum cost of a symbolic cost
state. We can obviously generalize this by extending a symbolic cost state with a
new �eld, priority, which is the priority of the state used by the priority queue.
Allowing various ways of assigning values to priority combined with choosing
either to �rst select a state with large or small priority opens for a large variety
of search orders.

Annotating the model with assignments to priority on the transitions, is one
way of allowing the user to guide the search. Because of its 
exibility it proves to
be a very powerful way of guiding the search. The assignment works like a normal
assignment to integer variables and allows for the same kind of expressions.

When searching for an error state in a system a random search order might
be useful. We have chosen to implement what we call random depth-�rst order
which as the name suggests is a variant of a depth-�rst search. The only di�erence
between this and a standard depth-�rst search is that before pushing all the
successors of a state on to Waiting (which is implemented as a stack), the
successors are randomly permuted.

Once a reachable goal state has been found, an upper bound on the minimum
cost of reaching a goal state has been obtained. If we choose to continue the
search, a smaller upper bound might be obtained. During state-space exploration
the cost never decreases therefore states with cost bigger than the best cost found
in a goal state cannot lead to an optimal solution, and can therefore be deleted.
The estimate of the remaining cost de�ned in Section 3.2 can also be used for
pruning exploration of states since whenever min(C)+Rem(l; C) is larger than
the best upper bound, no state covered by (l; C) can lead to a better solution
than the one already found.

All of the methods described in this section have been implemented in Up-
paal. Section 4 reports on experiments using these new methods.

4 Experiments

In this section we illustrate the bene�ts of extending Uppaal with heuristics and
costs through several veri�cation and optimization problems. All of the examples
have previously been studied in the literature.
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4.1 The Bridge Problem

The following problem was proposed by Ruys and Brinksma [RB98]. A timed
automaton model of this problem is included in the standard distribution of
Uppaal

4.
Four persons want to cross a bridge in the dark. The bridge is damaged

and can only carry two persons at the same time. To cross the bridge safely in
the darkness, a torch must be carried along. The group has only one torch to
share. Due to di�erent physical abilities, the four cross the bridge at di�erent
speeds. The time they need per person is (one-way) 25, 20, 10 and 5 minutes,
respectively. The problem is to �nd a schedule such that all four cross the bridge
within a given time. This can be done with standard Uppaal. With the proposed
extension, one can also �nd the best possible time for the persons to cross the
bridge, and a schedule for this.

We compare four di�erent search orders: Breadth-First (BF), Depth-First
(DF), MinimumCost (MC) and the improved MinimumCost (MC+) also using
the estimate of the remaining cost, Rem(C). In this example we choose the
estimate of the remaining cost to be the time needed by the slowest person, who
is still on the \wrong" side of the bridge.

Table 2 shows the number of states explored and the cost found for the �rst
and the optimal solution. The third column shows the number of states explored
and the cost when states are deleted based on the estimate of the remaining cost
(this does not apply to MC and MC+ because the search stops when the �rst
solution is found). As can be seen from the table, only about 10% of the states
searched to �nd an initial solution using breadth �rst order is needed for the
MC+ order to �nd the optimal solution.

Table 2. Bridge problem by Ruys and Brinksma.

Initial Solution Optimal Solution With est. remainder

states cost states cost states cost
BF 4491 65 4539 60 4493 60
DF 169 685 25780 60 5081 60
MC 1536 60 1536 60 N/A N/A
MC+ 404 60 404 60 N/A N/A

4.2 Job Shop Scheduling

A well known class of scheduling problems are the Job Shop problems. The
problem is to optimally schedule a set of jobs on a set of machines. Each job
is a chain of operations, usually one on each machine, and the machines have
a limited capacity, also limited to one in most cases. The purpose is to allocate
starting times to the operations, such that the overall duration of the schedule,
the makespan, is minimal.

4 The distribution can be obtained at http://www.uppaal.com.
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We apply Uppaal to 25 of the smaller Lawrence Job Shop problems.5 Our
models are based on the timed automata models in [Feh99a]. In order to esti-
mate the lower bound on the remaining cost, we calculate for each job and each
machine the duration of the remaining operations. The �nal estimate of the re-
maining cost is then estimated to be the maximum of these durations. Table 3
shows results obtained for the �rst 15 problems for the search orders DF, Ran-
dom DF, and a combined heuristic. The latter is based on depth-�rst but also
takes into account the remaining operation times and the lower bound on the
cost, via a weighted sum which is assigned to the priority �eld of the symbolic
state. We also tried using BF and MC order, but we did not obtain any results
even if we allow MC order to search for more than 30 minutes using more than
2Gb of memory no solution is found. With the MC+ order we could only �nd
solutions to la05 and la14 exploring 9791 and 10653 states respectively. It is
important to notice that the combined heuristic used includes a clever choice
between states with the same values of cost plus remaining cost. This is the
reason it is able to outperform the MC+ order.

As can be seen from the table Uppaal is handling the �rst 15 examples quite
well. For the 10 largest problems (la16 to la25) with 10 machines we did not �nd
optimal solutions though in some cases we were very close to the optimal solution.
Since branch-and-bound algorithms generally do not scale too well when the
number of machines and jobs increase, this is not surprising. The branch-and-
bound algorithm for [AC91], who solves about 10 out the 15 problems in the same
setting, faces the same problem. Note that the results of this algorithm depend
sensitively on the choice of an initial upper bound. Also the algorithm used
in [BJS95], who combines a good heuristic with an eÆcient branch-and-bound
algorithm and thus solves all of these 15 instances, does not �nd solutions for
the larger instances with 15 jobs and 10 machines or larger.

Table 3. Results for the smaller 15 Job Shop problems with 5 machines and
10 jobs (la1-la5), 15 jobs (la6-la10) and 20 jobs (la11-la15). The table shows the
best solution found by di�erent search orders within 60 seconds cputime on a
Pentium II 300 MHz. If the search terminated also the number of explored states
is given. The last row gives the makespan of an optimal solution.

problem instance la01 la02 la03 la04 la05 la06 la07 la08 la09 la10 la11 la12 la13 la14 la15

DF
cost 2466 2360 2094 2212 1955 3656 3410 3520 3984 3681 4974 4557 4846 5145 5264
states - - - - - - - - - - - - - - -

RDF
cost 842 806 769 783 696 1076 1113 1009 1154 1063 1303 1271 1227 1377 1459
states - - - - - - - - - - - - - - -

comb. cost 666 672 626 639 593 926 890 863 951 958 1222 1039 1150 1292 1289
heur states 292 - - - 284 480 - 400 425 454 642 633 662 688 -
minimal makespan 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207

5 These and other benchmark problems for Job Shop scheduling can be found on

ftp://ftp.caam.rice.edu/pub/people/applegate/jobshop/.
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4.3 The Sidmar Steel Plant

Proving schedulability of an industrial plant via a reachability analysis of a
timed automaton model was �rstly applied to the SIDMAR steel plant, which
was included as case study of the Esprit-LTR Project 26270 VHS (Veri�cation
of Hybrid Systems). The plant consists of �ve machines placed along two tracks
and a casting machine where the �nished steel leaves the system. The two tracks
and the casting machine are connected via two overhead cranes on one track.
Each quantity of raw iron enters the system in a ladle and depending on the
desired steel quality undergoes treatments in the di�erent machines of di�erent
durations. The aim is to control the plant in particular the movement of the ladles
with steel between the di�erent machines, taking the topology of the plant into
consideration.

We use a model based on the models and descriptions in [BS99,Feh99b,HLP99].
A full model of the plant that includes all possible behaviors was however not
immediate suitable for veri�cation. Using BF or DF search it was impossible to
generate a schedule for a model with only three ladles. Priorities can be used to
in
uence the search order of the state space, and thus to improve the results.
Based on a depth-�rst strategy, we reward transitions that are likely to serve in
reaching the goal, whereas transitions that may spoil a partial solution result in
lower priorities.

A schedule for three ladles was produced in [Feh99b] for a slightly simpli�ed
model usingUppaal. In [HLP99] schedules for up to 60 ladles were produced also
usingUppaal. However, in order to do this, additional constraints were included
that reduce the size of the state-space drastically, but also prune possibly sensible
behavior. A similar reduced model was used by Stobbe in [Sto00], who uses
constraint programming to schedule 30 ladles. All these works only consider
ladles with the same quality of steel and the initial solutions cannot be improved.

Using a search order based on the priorities we can generate a schedule for
ten ladles, compared to two without priorities, with varying qualities of steel
within 60 seconds cputime on a Pentium II 300 MHz. The initial solution found
is improved by 5% within the time limit. Importantly, in this approach we do
not rule out optimal solutions. Allowing the search to go on for longer, models
with more ladles can be handled.

4.4 Pure Heuristics: The Biphase Mark Protocol

The Biphase Mark protocol is a convention for transmitting strings of bits and
clock pulses simultaneously as square waves. This protocol is widely used for
communication in the ISO/OSI physical layer; for example, a version called
\Manchester encoding" is used in the Ethernet. The protocol ensures that strings
of bits can be submitted and received correctly, in spite of clock drift, jitter and
�ltering by the channel. A formal parameterized timed automaton model of the
Biphase Mark Protocol was given in [Vaa00]. We will use the corresponding
Uppaal models to investigate the bene�ts of heuristics in pure reachability
analysis.



EÆcient Guiding Towards Cost-Optimality in UPPAAL 187

Table 4. Results for nine erroneous instances of the Biphase Mark protocol.
The numbers are the number of state explored before reaching an error state.

nondetection sampling sampling
mark subcell early late

(1
6
,3
,1
1
)

(1
8
,3
,1
0
)

(3
2
,3
,2
3
)

(1
6
,9
,1
1
)

(1
8
,6
,1
0
)

(3
2
,1
8
,2
3
)

(1
5
,8
,1
1
)

(1
7
,5
,1
0
)

(3
1
,1
6
,2
3
)

breadth �rst 1931 2582 4049 990 4701 2561 1230 1709 3035
in==1 heuristic 1153 1431 2333 632 1945 1586 725 1039 1763

The three parameters in the model are the size of the mark and code cell of the
sending process and the size of the sampling distance at the receiver. Basically,
for each bit send, two points needs to be read for the receiver to interpret the
bit correctly. Three kinds of errors can occur: the 'middle point' (called mark
subcell) is missed, the end point is sampled too early or too late. Two of the
three errors occur only if input "1" is o�ered to the receiver, and the third error
can occur in any case. Therefore we will guide the model to make a breadth
�rst search but only in the part of the state-space where a "1" is send. Table 4
shows the number of states searched in order to �nd the error in three erroneous
instances of the protocol. Using the heuristic almost halves the number of states
searched before the error is found.

5 Conclusion

On the preceding pages, we have contributed with (1) a cost function based sym-
bolic semantics for the class of linearly priced timed automata; (2) an eÆcient,
zone based implementation of cost functions for the class of uniformly priced
timed automata; (3) an optimal search order for �nding the minimum cost of
reaching a goal state; and (4) experimental evidence that these techniques can
lead to dramatic reductions in the number of explored states. In addition, we
have shown that it is possible to quickly obtain upper bounds on the minimum
cost of reaching a goal state by manually guiding the exploration algorithm using
priorities.
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