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Abstract. Testing is the most dominating validation activity used by industry
today, and there is an urgent need for improving its effectiveness, both with re-
spect to the time and resources for test generation and execution, and obtained
test coverage. We present a new technique for automatic generation of real-time
black-box conformance tests for non-deterministic systems from a determinizable
class of timed automata specifications with a dense time interpretation. In con-
trast to other attempts, our tests are generated using a coarse equivalence class
partitioning of the specification. To analyze the specification, to synthesize the
timed tests, and to guarantee coverage with respect to a coverage criterion, we
use the efficient symbolic techniques recently developed for model checking of
real-time systems. Application of our prototype tool to a realistic specification
shows promising results in terms of both the test suite size, and the time and
space used for test generation.

1 Background

Testing consists of executing a program or a physical system with the intention of find-
ing undiscovered errors. In typical industrial projects, as much as a third of the total
development time is spent on testing, and it therefore constitutes a significant portion of
the cost of the product. Since testing is the most dominating validation activity used by
industry today, there is an urgent need for improving its effectiveness, both with respect
to the time and resources used for test generation and execution, and obtained coverage.

A potential improvement that is being examined by researchers is to make testing a
formal method, and to provide tools that automate test case generation and execution.
This approach has experienced some level of success: Formal specification and auto-
matic test generation are being applied in practice [7, 20, 23, 26], and commercial test
generations tools are emerging [17, 24]. Typically, a test generation tool inputs some
kind of finite state machine description of the behavior required of the implementation.
A formalized implementation relation describes exactly what it means for an implemen-
tation to be correct with respect to a specification. The tool interprets the specification
or transforms it to a data structure appropriate for test generation, and then computes
a set of test sequences. Since exhaustive testing is generally infeasible, it must select
only a subset of tests for execution. Test selection can be based on manually stated test
purposes, or on a coverage criterion of the specification or implementation.
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However, these tools do not address real-time systems, or only provide a limited
support of testing the timing aspects. They often abstract away the actual time at which
events are supplied or expected, or does not select these time instances thoroughly and
systematically. To test real-time systems, the specification language must be extended
with constructs for expressing real-time constraints, the implementation relation must
be generalized to consider the temporal dimension, and the data structures and algo-
rithms used to generate tests must be revised to operate on a potentially infinite set of
states. Further, the test selection problem is worsened because a huge number of time
instances are relevant to test. It is therefore necessary to make good decisions of when
to deliver an input to the system, and when to expect an output. Since real-time systems
are often safety critical, the time dimension must be tested thoroughly and systemati-
cally. Automated test generation for real-time systems is a fairly new research area, and
only few proposals exist that deal with these problems.

This paper presents a new technique for automatic generation of timed tests from
a restricted class of dense timed automata specifications. We permit both non-deter-
ministic specifications and (black-box) implementations. Our implementation relation
is therefore based on Hennessy’s classical testing theory [21] for concurrent systems,
which we have generalized to take time into account. We propose to select test cases
by partitioning the state space into coarse grained equivalence classes which preserve
essential timing and deadlock information, and select a few tests for each class. This
approach is inspired by sequential black-box testing techniques frequently referred to
as domain- or partition testing [3]. We regard the clocks of a timed specification as
(oddly behaving) input parameters.

We present an algorithm and data structure for systematically generating timed Hen-
nessy tests. The algorithm ensures that the specification will be covered such that the rel-
evant Hennessy tests for each reachable equivalence class will be generated. To compute
and cover the reachable equivalence classes, and to compute the timed test sequences,
we employ efficient symbolic reachability techniques based on constraint solving that
have recently been developed for model checking of timed automata [15, 6, 28, 4, 18].

In summary, the contributions of the paper are:

– We propose a coarse equivalence class partitioning of the state space and use this
for automatic test selection.

– Other work on test generation for real-time systems allows deterministic specifi-
cations only, and use trace inclusion as implementation relation. We permit both
non-deterministic specifications and (black-box) implementations, and use an im-
plementation relation based on Hennessys testing theory that takes deadlocks into
account.

– Application of the recently developed symbolic reachability techniques has to our
knowledge not previously been applied to test generation.

– Our techniques are implemented in a prototype test generation tool, RTCAT.
– We provide experimental data about the efficiency of our technique. Application of

RTCAT to one small and one larger case study results in encouragingly small test
suites.

The remainder of the paper is organized as follows. Section 2 summarizes the re-
lated work. Section 3 introduces Hennessy tests, the specification language, and the
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symbolic reachability methods. Section 4 presents the test generation algorithm. Sec-
tion 5 contains our experimental results. Section 6 concludes the paper and suggests
future work.

2 Related Work

Springintveld et al. proved in [27] that exhaustive testing wrt. trace equivalence of
deterministic timed automata with a dense time interpretation is theoretically possible,
but highly infeasible in practice. Another result generating checking sequences for a
discretized deterministic timed automaton is presented by En-Nouaary et al. in [16].
Although the required discretization step size (1=(jXj + 2), where jXj is the number
of clocks) in [16] is more reasonable than [27], it still appears to be too small for most
practical applications because too many tests are generated. Both of these techniques are
based on the so called region graph technique due to Alur and Dill [1]. Clock regions
are very fine-grained equivalence classes of clock valuations. We argue that coarser
partitions are needed in practice. Further, our equivalence class partitioning as well as
the used symbolic techniques are much less sensitive to the clock constants and the
number of clocks appearing in the specification compared to the region construct.

Cardell-Oliver and Glover showed in [9] how to derive checking sequence from a
discrete time, deterministic, timed transition system model. Their approach is imple-
mented in a tool which is applied to a series of small cases. Their result indicates that
the approach is feasible, at least for small systems, but problems arise if the implemen-
tation has more states than the specification. No test selection wrt. the time dimension
is performed, i.e., an action is taken at all the time instances it is enabled.

Clarke and Lee [11, 12] also propose domain testing for real-time systems. Al-
though their primary goal of using testing as a means of approximating verification to
reduce the state explosion problem is different from ours, their generated tests could
potentially be applied to physical systems as well. Their technique appear to produce
much fewer tests than region based generation. The time requirements are specified
as directed acyclic graphs called constraint graphs. Compared to timed automata this
specification language appear very restricted, e.g., since their constraint graphs must
be acyclic this only permits specification of finite behaviors. Their domains are “nice”
linear intervals which are directly available in the constraint graph. In our work they are
(convex) polyhedra of a dimension equal to the number of clocks.

Braberman et al. [8] describe an approach where a structured analysis/structured
design real-time model is represented as a timed Petri net. Analysis methods for timed
Petri nets based on constraint solving can be used to generate a symbolic timed reach-
ability tree up to a predefined time bound. From this, specific timed test sequences can
be chosen. This work shares with ours the generation of tests from a symbolic represen-
tation of the state space. We guarantee coverage according to a well defined criterion
without reference to a predefined or explicitly given upper time bound. The paper also
proposes other selection criteria, mostly based on the type and order of the events in the
trace. However, they are concerned with generating traces only, and not on deadlock
properties as we are. The paper describes no specific data structures or algorithms for
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constraint solving, and states no results regarding their efficiency. Their approach does
not appear to be implemented.

Castanet et al. presents in [10] an approach where timed test traces can be gener-
ated from timed automata specifications. Test selection must be done manually through
engineerer specified test purposes (one for each test) themselves given as deterministic
acyclic timed automata. Such explicit test selection reduces the state explosion prob-
lem during test generation, but leaves a significant burden on the engineer. Further, the
test sequences appear to be synthesized from paths available directly in an intermedi-
ate timed automaton formed by a synchronous product of the specification and the test
purpose, and not from a (symbolic) interpretation thereof. This approach therefore risks
generating tests which need not be passed by the implementation, or not finding a test
satisfying the test purpose when one in fact exists.

Finally, test generation from a discrete time temporal logic is investigated by [20].

3 Preliminaries

3.1 Hennessy Tests

In Hennessy’s testing theory [21] specifications S are defined as finite state labelled
transition systems over a given finite set of actions Act. Also, it assumes that imple-
mentations I (and specifications) can be observed by finite tests T via a sequence
of synchronous CCS-like communications. So, the execution of a test consists of a
finite sequence of communications forming a so–called computation — denoted by
Comp(T k I) (or Comp(T k S)). A test execution is assigned a verdict (pass, fail
or inconclusive), and a computation is successful if it terminates after an observation
having the verdict pass.

Hennessy tests have the following abstract syntax Ltlts: (1) after � must A, (2)
can �, and (3) after � must ;, where � 2 Act� and A � Act. Informally, (1) is
successful if at least one of the observations in A (called a must set) can be observed
whenever the trace � is observed, (2) is successful if � is a prefix of the observed system,
and (3) is successful is this is not the case (i.e. � is not a prefix).

Definition 1. The Testing Preorder vte:

1. S must T i� 8� 2 Comp(T k S): � is successful.
2. S may T i� 9� 2 Comp(T k S): � is successful.
3. S vmust I i� 8 T 2 Ltlts: S must T implies I must T
4. S vmay I i� 8 T 2 Ltlts: S may T implies I may T
5. S vte I i� S vmust I and S vmay I

�
Specifications and implementations are compared by the tests they pass. The must

(may) preorder requires that every test that must (may) be passed by the specification
must (may) also be passed by the implementation. In non-deterministic systems these
notions do not coincide. The testing preorder defined formally in Definition 1 requires
satisfaction on both the must and may preorders.
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A must test after � must A can be generated from a specification by 1) find-
ing a trace � in the specification, 2) computing the states that are reachable after that
trace, and 3) computing a set of actions A that must be accepted in these states. To
facilitate and ease systematic generation of all relevant tests, the specification can be
converted to a success graph (or acceptance graph [13]) data structure. A success graph
is a deterministic state machine trace equivalent to the specification, and whose nodes
are labeled with the must sets holding in that node, the set of actions that are possible,
and the actions that must be refused.

We propose a simple timed generalization of Hennessy’s tests. In a timed test
after�mustA (or after�must ;), � becomes a timed trace (a sequence of alternat-
ing actions and time delays), after which an action in A must be accepted immediately.
Similarly, a test can � (after �must ;) becomes a timed trace satisfied if � is (is not)
a prefix trace of the observed system. A test will be modelled by an executable timed
automaton whose locations are labelled with pass, fail, or inconclusive verdicts.

3.2 Event Recording Automata

Two of the surprising undecidability results from the theoretical work on timed lan-
guages described by timed automata is that 1) a non-deterministic timed automaton
cannot in general be converted into a deterministic (trace) equivalent timed automaton,
and 2) trace (language) inclusion between two non-deterministic timed automata is un-
decidable [2]. Thus, unlike the untimed case, deterministic and non-deterministic timed
automata are not equally expressive. The Event Recording Automata model (ERA) was
proposed by Alur, Fix, and Henzinger in [2] as a determinizable subclass of timed au-
tomata, which enjoys both properties.

Definition 2. Event Recording Automaton:

1. An ERAM is a tuple hAct;N; l0; EiwhereAct is the set of actions, N is a (finite)
set of locations, l0 2 N is the initial location, and E � N �G(X) � Act�N is
the set of edges. We use the term location to denote a node in the automaton, and
reserve the term state to denote the semantic state of the automaton also including
clock values.

2. X = fxa j a 2 Actg is the set of clocks. The guards G(X) are generated by the
syntax g ::= 
 j g ^ g where 
 is a constraint of the form x1 � c or x1 � x2 � c

with�2 f�; <;=; >;�g, c a non-negative integer constant, and x1; x2 2 X.

�

Like a timed automaton, an ERA has a set of clocks which can be used in guards
on actions, and which can be reset when an action is taken. In ERAs however, each
action a is uniquely associated with a clock xa, called the event clock of a. Whenever
an action a is executed, the event clock xa is automatically reset. No further clock as-
signments are permitted. The event clock xa thus records the amount of time passed
since the last occurrence of a. In addition, no internal � actions are permitted. These
restrictions are sufficient to ensure determinizability [2]. We shall finally also assume
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that all observable actions are urgent meaning that synchronization between the envi-
ronment and automaton takes place immediately when the parties have enabled a pair of
complementary actions. With non-urgent observable actions this synchronization delay
would be unbounded.
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Fig. 3. ERA specification of a coffee vending machine (a), and determinized machine
(b).

Figure 3a shows an example of a small ERA. It models a coffee vending machine
built for impatient users such as busy researchers. When the user has inserted a coin
(coin), he must press the give button (give) to indicate his eager to get a drink.
If he is very eager, he presses give soon after inserting the coin, and the vending
machine outputs thin coffee (thinCof); apparently, there is insufficient time to brew
good coffee. If he waits more than four time units, he is certain to get good coffee (cof).
If he presses give after exactly four time units, the outcome is non-deterministic.

In a deterministic timed automata, the choice of the next edge to be taken is uniquely
determined by the automaton’s current location, the input action, and the time the input
event is offered. The determinization procedure for ERAs is given by [2], and is con-
ceptually a simple extension of the usual subset construction used in the untimed case,
only now the guards must be taken into account. Figure 3b illustrates the technique.
Observe how the guards of the give edges from fs2g become mutually exclusive such
that either both are enabled, or only one of them is.

3.3 Symbolic Representation

Timed automata with a dense time interpretation cannot be analyzed by finite state tech-
niques, but must rather be analyzed symbolically. Efficient symbolic reachability tech-
niques have been developed for model checking of timed automata [15, 6, 28, 4, 18].
Specifically, we shall employ similar techniques as those developed for the UPPAAL

tool [28, 4, 18].
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The state of a timed automaton can be represented by the pair h�l; �ui, where �l is the
automaton’s current location (vector), and where �u is the vector of its current clock
values. A zone z is a conjunction of clock constraints of the form x1 � c or x1 �
x2 � c with �2 f�; <;=; >;�g, or equivalently, the solution set to these constraints.
A symbolic state [�l; z] represents a (infinite) set of states: fh�l; �ui j �u 2 zg. Forward
reachability analysis starts in the initial state, and computes the symbolic states that
can be reached by executing an action or a delay from an existing one. When a new
symbolic state is included in one previously visited, no further exploration of the new
state needs to take place. Forward reachability thus terminates when no new states can
be reached. A concrete timed trace to a given state or set of states can be computed
by back propagating its constraints along the symbolic path used to reach it, and by
choosing specific time points along this trace.

Zones can be represented and manipulated efficiently by the difference bound matrix
(DBM) data structure. DBMs were first applied to represent clock differences by Dill
in [15]. A DBM represents clock difference constraints of the form xi � xj � cij by
a (n + 1) � (n + 1) matrix such that cij equals matrix element (i; j), where n is the
number of clocks, and �2 f�; <g.

4 A Test Generation Algorithm

Our equivalence class partitioning and coverage criterion are introduced in Section 4.1.
An algorithm for constructing the equivalence classes of a specification is provided in
Section 4.2. The test generation algorithm is presented in Section 4.3.

4.1 State Partitioning

Since exhaustive testing is generally infeasible, it is important to systematically select
and generate a limited amount of tests. A test selection criterion (or coverage criterion)
is a rule describing what behavior or requirements should be tested. Coverage is a metric
of completeness with respect to a test selection criterion. In industrial projects it is
highly desirable that there is such a well defined metric of the testing thoroughness, and
that this can be measured.

We propose a criterion based on partitioning the state space of the specification into
coarse equivalence classes, and requiring that the test suite for each class makes a set
of required observations of the implementation when it is expected to be in a state in
that class. These observations are used to increase the confidence that the equivalence
classes are correctly implemented. The partitioning and observations can be done in
numerous ways, and some options are explored and formally defined in [22]. Given the
partitioning stated in the following, the stable edge set criterion implemented in RTCAT
requires that all relevant simple deadlock observations of the forms after �mustA (a
must property), after a must ; (a refusal property), and can a (a may property) are
made at least once in each class.

From each control location L (recall that a location in a deterministic automaton is
the set of locations of the original automaton that the automaton can possibly occupy
after a given trace), the clock valuations are partitioned such that two clock valuations
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belong to the same equivalence class iff they enable precisely the same edges from
L, i.e. the states are equivalent wrt. the enabled edges. An equivalence class will be
represented by a pair [L; p], where L is a set of location vectors, and p is the inequa-
tion describing the clock constraints that must hold for that class, i.e., [L; p] is the set
of states fhL; �ui j �u 2 pg. Further, to obtain contiguous convex equivalence classes,
and to reuse the existing efficient symbolic techniques, this constraint is rewritten to
its disjunctive normal form. Each disjunct is treated as its own equivalence class. The
partitioning from a given set of locations is defined formally in Definition 4.

Definition 4. State partitioning	 (L):
Let L be a set of location vectors, E(L) the set of edges starting in a location vector in
L, E a set of edges, and � (E) = fg j �l

g;a
��! �l0 2 Eg. Recall from Definition 2 that

G(X) denotes the guards generated by the syntax g ::= 
 j g ^ g where 
 is a basic
clock constraint of the form x1 � c or x1 � x2 � c.

Let P be a constraint over clock inequations 
 composed using any of the logical
connectives ^;_; or :. Let DNF(P ) denote a function that rewrites constraint P to
its equivalent disjunctive normal form, i.e., such that

W
i

V
j

ij = P . Each conjunct

in the disjunctive form can be written as a guard g in G(X) by appropriately negat-
ing basic clock constraints where required. The disjunctive normal form can there-
fore be interpreted as a disjunction of guards such that

W
i gi =

W
i

V
j 
ij . The set

of guards gi whose disjunction equals the disjunctive normal form is denoted GDNF,
i.e, GDNF(PE) = fgi 2 G(X) j

W
i gi = DNF(PE)g.

1. 	 (L) = fPE j E 2 2E(L)g; where PE =
^

g2� (E)

g ^
^

g2� (E(L)�E)

:g

2. 	dnf (L) =
[

PE2	(L)

GDNF(PE)

�

Our partitioning is based on the guards that actually occur in a specification, and is
therefore much coarser than e.g., the region partitioning which is based on the guards
that could possibly occur in an automaton according to the syntax in Definition 2. It
also has the nice formal property that the states in the same equivalence class are also
equivalent with respect the previously stated simple deadlock properties. This follows
from the absence of � actions, and since only enabled edges, and not the precise clock
values, affects the satisfaction of these properties. In contrast, different equivalence
classes typically satisfy different simple deadlock properties. It is therefore natural to
check that the implementation matches these properties for each equivalence class. Us-
ing an even coarser partitioning is therefore likely to leave out significant timing and
deadlock behavior.

Each equivalence class [L; p] can now be decorated with the action sets M;C;R

defined in Definition 5.



Automated Test Generation from Timed Automata 351

Definition 5. Decorated Equivalence Classes:
Define Must([L; p]) = fA j 9hL; �ui 2 [L; p]: hL; �ui j= after �mustAg

Sort([L; p]) = fa j 9hL; �ui 2 [L; p]: hL; �ui
a
�!g

1. M ([L; p]) = Must[L; p].
2. C([L; p]) = Sort([L; p]).
3. R([L; p]) = Act � Sort([L; p]).

�
M contains the sets of actions necessary to generate the must tests, C the may tests,
and R the refusal tests for that class. Specifically, if � is a timed trace leading to class
[L; p], and A 2M ([L; p]) then after �mustA is a test to be passed for that class. So
is after � � a must ; if a 2 R([L; p]), and can � � a if a 2 C([L; p]). The number
of generated tests can be further reduced by removing tests that are logically passed
by another test. The must sets can be reduced to M ([L; p]) = min�Must[L; p]. The
actions observed during the execution of a must test can be removed from the may tests,
i.e., C([L; p]) = Sort([L; p])�

S
A2M([L;p]) A.

4.2 Equivalence Class Graph Construction

We view the state space of the specification as a graph of equivalence classes. A node in
this graph contains an equivalence class. An edge between two nodes are labeled with
an observable action, and represents the possibility of executing an action in a state
in the source node, waiting some amount of time, and thereby entering a state in the
target node. The graph is constructed by starting from an existing node [L; p] (initially
the equivalence classes of the initial location), and then for each enabled action a, by
computing the set of locationsL0 that can be entered by executing the a action from the
equivalence class. Then the partitions p0 of location L0 can be computed according to
Definition 4 (2). Every [L0; p0] is then an a successor of [L; p]. It should be noted that
only equivalence classes whose constraints have solutions need to be represented. The
equivalence class graph is defined inductively in Definition 6. This definition can easily
be turned into an algorithm for constructing the equivalence class graph.

Definition 6. Equivalence Class Graph:
The nodes and edges are defined inductively as:

1. The set f[L0; p] j L0 = f�l0g; p 2 	dnf (L0); and p 6= ;g are nodes.
2. if [L; p] is a node, so is [L0; p0], and [L; p]

a
�! [L0; p0] is an edge if p0 6= ;, where

L0 = f�l0 j 9�l 2 L: �l
g;a
��! �l0g, and p0 2 	dnf (L

0).

�
The construction algorithm implicitly determinizes the specification. The equiva-

lence class graph preserves all timed traces of the specification, and furthermore pre-
serves the required deadlock information for our timed Hennessy tests of the specifica-
tion by the M , C, and R action sets stored in each node. The non-determinism found
in the original specification is therefore not lost, but is represented differently, and in
a way that is more convenient for test generation: A test is composed of a trace, a
deadlock observation possible in the specification thereafter, and associated verdicts,
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and this information can be found simply by following a path in the equivalence class
graph. All timed Hennessy tests that the specification passes can thus be generated from
this graph. The explicit graph also makes it easy to ensure coverage according to the
coverage criterion by marking the visited parts of the graph during test generation. The
equivalence class graph for the coffee machine is depicted in Figure 7.

p0 : tt

p5 : Xgive � 2
give?

give?

thinCof!

cof!

coin?

[fs1g; p0]

thinCof!

give?

p6 : Xgive2 [1;2)

[fs3; s4g; p6]

coin?

coin?

[fs3; s4g; p5]

[fs6g; p12]

p12 : tt

[fs5g; p13]

p13 : tt

p7 : Xgive < 1

[fs3; s4g; p7]

[fs2g;p1]

p1 : Xcoin = 4

coin?

give?

give?

give?
[fs3g; p10]

give?

thinCof!

cof!

[fs2g;p2]

p2 : Xcoin 2 [2;4)

p3 : Xcoin > 4

[fs2g;p4]

p4 : Xcoin < 2

[fs3g; p11]

p10 : Xgive � 2

p11 : Xgive < 2

p8 : Xgive � 1

[fs4g; p9]

p9 : Xgive < 1

[fs4g; p8]
[fs2g;p3]

Fig. 7. Equivalence class graph for the coffee machine.

4.3 Overall Algorithm

The equivalence class graph preserved the necessary information for generating timed
Hennessy tests. However, it also contains behavior and states not found in the specifi-
cation, and using such behavior will result in irrelevant and unsound tests. An unsound
test may produce the verdict fail even when the implementation conforms to the specifi-
cation. According to the testing preorder only tests passed by the specification should be
generated. To ensure soundness, only the traces and deadlock properties actually con-
tained in the specification may be used in a generated test. To find these, we therefore
interpret the specification symbolically, and generate the timed Hennessy tests from a
representation of only the reachable states and behavior. Moreover, the use of reach-
ability analysis gives a termination criterion for this interpretation; when completed it
guarantees that every reachable equivalence class is represented by some symbolic state.
Thus, we are able to guarantee coverage by inspecting the reached symbolic states.

Algorithm 8 presents the main steps of our generation procedure. Step 1 constructs
the equivalence class graph as described in Section 4.1. The result of step 2 is a symbolic
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reachability graph. Nodes in this graph consist of symbolic states [L; z=p]where L is a
set of location vectors, and where z is a constraint characterizing a set of reachable clock
valuations also in p, i.e., z � p. An edge represents that the target state is reachable by
executing an action from the source state and then waiting some amount of time.

The nodes in the reachability graph are decorated according to Definition 5 in step 3.
The boolean flag toBeTested indicates whether test cases should be made for this sym-
bolic state or they should be omitted. If no tests should be made, the only actions exe-
cuted from this state will be those necessary to reach other symbolic states. Normally
this flag would be set only the first time an equivalence class is reached during the for-
ward reachability analysis in the previous step. Subsequent passes over the same class
would hence be ignored. This ensures that each simple deadlock property is only gen-
erated once per equivalence class, and thus reduces the number of produced test cases.
Different settings of this flag permit other strategies to be easily implemented. Other
strategies could be to test all reached symbolic states, or only test certain designated
locations deemed critical by the user.

Algorithm 8. Overall Test Case Generation Algorithm:
input: ERA specification S.
output: A complete covering set of timed Hennessy tests to be passed.

1. Compute Sp = Equivalence Class Graph(S).
2. Compute Sr = Reachability Graph(Sp).
3. Label every [L; z=p] 2 Sr with the sets M , C, R, and boolean flag toBeTested .
4. Traverse Sr. For each [L; z=p] in Sr :

if toBeTested([L; z=p]) then enumerate tests:
(a) Choose h�l; �ui 2 [L; z=p]

(b) Compute a concrete timed trace � 2 Sr from h�l0; �0i to h�l; �ui.
(c) Make test cases to be passed:

if A 2M ([L; p]) then after �mustA is a test.
if a 2 C([L; p]) then can � � a is a test.
if a 2 R([L; p]) then after � � amust ; is a test.

�
Step 4 contains the generation process itself. If a particular point in the symbolic

state is of interest, such as an extreme value, this must be computed (step 4a). When a
point has been chosen, a trace leading to it from the initial state is computed (step 4b).
Finally, in step 4c, a test case can be generated for each of the must, may, and refusal
properties holding in that symbolic state, and can finally be output as a test automaton
in whatever output format is desired.

It should be noted that the above algorithm generates individual timed Hennessy
tests. In general, it is desirable to compose several of these properties into fewer tree
structured tests. To facilitate test composition, the traversal and construction of test
cases in step 4 should be done differently. A composition algorithm is implemented in
RTCAT. Furthermore, the graphs in steps 1 and 2 can be constructed on-the-fly. Since
not all equivalence classes may be reachable, this could result in a smaller graph and
less memory use during its construction.
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5 Experimental Results

RTCAT accepts ERA specifications in AUTOGRAPH format [25]. A specification may
consist of several ERAs operating in parallel, and communicating via shared clocks and
integer variables, but no internal synchronization is allowed as stated in Section 3.2.
Other features are described in [22]. RTCAT occupies about 22K lines of C++ code,
and is based on code from a simulator for timed automata (part of an old version of
the UPPAAL toolkit [19]). Its AUTOGRAPH file format parser was reused with some
minor modifications to accommodate the ERA syntax. Also its DBM implementation
was reused with some added operations for zone extrapolation and clock scaling.

Xcoin=100
coin!

Xcoin=2
give!

XthinCof=100
Act

Xgive=101
thinCof?

Xcoin=100
coin!

Xcoin=105
give!

Xcof=100
Act

Xgive=102
cof?

Xcoin=100
coin!

Xcoin=4
give!

Xgive=1
thinCof?

Xcoin=100
coin!

Xcoin=4
give!

Xgive=102
thinCof?

Xgive=102
cof?

Fig. 9. Example tests generated from the coffee machine in Figure 3. Filled states are
fail states, and unfilled states are pass states. Diamonds contain actions to be refused
at the time indicated at the its top. Act is an acronym for all actions.

Figure 9 shows some examples of generated test cases from the coffee machine
specification in Figure 3a. RTCAT has been configured to select test points in the in-
terior of the equivalence classes. To analyze the feasibility of our techniques we have
created an ERA version of the frequently studied Philips audio protocol [5, 4] and a
simple token passing protocol, applied RTCAT, and measured the number and length of
the generated tests, the number of reached (convex) equivalence classes and symbolic
states, and the space and time needed to generate the tests and output them to a file.
The ERA models can be found in [22]. The platform used in the experiment consists
of a Sun Ultra-250 workstation running Solaris 5.7. The machine is equiped with 1 GB
RAM and 2x400 MHz CPU’s. No extra compiler optimizations was done to the code.
The results are tabulated in Table 10.

The size of the produced test suites is in all combinations quite manageable, and
constitute test suites that could easily be executed in practice. There is thus a large
margin allowing for more test points per equivalence class, or longer tests. Moreover,
coverage of even larger specifications can also be obtained. Since the reached sym-
bolic states are labeled toBeTested during construction of the reachability graph, the
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construction order may influence the number and length of tests. Our results show that
depth first construction generates slightly fewer tests than breadth first, but also con-
siderably longer test suites. This suggests that breadth first should be used when the
most economic covering test suite is desired, and that depth first should be used when a
covering test suite is desired that also checks longer sequences of interactions.

Breadth First Depth First
Specification CofM Phil (R) Phil (S) Token7 CofM Phil (R) Phil (S) Token7

Equivalence Classes 14 60 47 42 14 60 47 42

Symbolic States 17 71 97 15427 17 85 98 7283
Time (s) 1 1 2 541 1 2 2 158
Memory (MB) 5 5 5 40 5 5 5 24
C-Number of Tests 16 97 68 71 16 86 67 60
C-Total Length 45 527 393 574 45 1619 487 5290
I-Number of Tests 22 118 85 84 22 118 85 84
I-Total Length 58 614 467 665 58 2103 587 6321

Table 10. Experimental results from generating tests from the coffee machine, the
Philips audio protocol receiver component, sender component with collision detec-
tion, and 7-node token passing protocol. I=individually generated tests (algorithm 8),
C=composed tests.

The tabulated figures on the space and time consumption is the maximum observed;
generally test composition takes slightly longer and uses a little extra space. For the
first three specifications, the space and time consumption is quite low, and indicates
that fairly large specifications can be handled. However, we have also encountered a
problem with our current implementation which occurs for some specifications (such
as the token passing protocol), where our application of the symbolic reachability tech-
niques becomes a bottleneck. When the specification uses a large set of active clocks
(one per node to measure the token holding time for that node plus one auxiliary in
the example), we experience that a large number of symbolic states is constructed in
order to terminate the forward reachability analysis. Consequently, an extreme amount
of memory is used to guarantee complete coverage. It is important to note that the size
of the produced test suite is still quite reasonable. We believe that this problem can be
alleviated by applying the reachability analysis on the original specification automaton
rather than as presently done on the equivalence class graph. This should result in larger
and fewer symbolic states. Further, more sophisticated clock reduction algorithms could
be applied [14], e.g., in the token passing protocol only one node may hold the token at
a time, and thus one clock suffices.

6 Conclusions and Future Work

This paper presented a new technique for generating real-time tests from a restricted,
but determinizable class of timed automata. The underlying testing theory is Hennessy’s
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tests lifted to include timed traces. A principal problem is to generate a sufficiently small
test suite that can be executed in practice while maintaining a high likelihood of detect-
ing unknown errors and obtaining the desired level of coverage. In our technique, the
generated tests are selected on the basis of a coarse equivalence class partitioning of the
state space of the specification. We employ the efficient symbolic techniques developed
for model checking to synthesize the timed tests, and to guarantee coverage with respect
to a coverage criterion. The techniques are implemented in a prototype tool. Application
thereof to a realistic specification shows promising results. The test suite is quite small,
and is constructed quickly, and with a reasonable memory usage. Our experiences, how-
ever, also indicate a problem with our application of the symbolic reachability analysis,
which should be addressed in future implementation work. Compared to previous work
based on the region graph technique, our approach appear advantageous.

Much other work remain to be done. In particular we are examining the possibilities
for generalizing our specification language. It will be important to allow specification
and effective test of timing uncertainty, i.e., that an event must be produced or accepted
at some (unspecified) point in an interval. Further, it should be possible to specify envi-
ronment assumptions and to take these into account during test generation. Finally, our
techniques should be examined with real applications, and the generated test should be
executed against real implementations.
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