
A Technique for Invariant Generation?

A. Tiwari, H. Rue�, H. Sa��di, and N. Shankar

SRI International,

333 Ravenswood Ave,

Menlo Park, CA, U.S.A

ftiwari,ruess,saidi,shankarg@csl.sri.com

Abstract. Most of the properties established during veri�cation are ei-

ther invariants or depend crucially on invariants. The e�ectiveness of au-

tomated formal veri�cation is therefore sensitive to the ease with which

invariants, even trivial ones, can be automatically deduced. While the

strongest invariant can be de�ned as the least �xed point of the strongest

post-condition of a transition system starting with the set of initial states,

this symbolic computation rarely converges. We present a method for

invariant generation and strengthening that relies on the simultaneous

construction of least and greatest �xed points, restricted widening and

narrowing, and quanti�er elimination. The e�ectiveness of the method is

demonstrated on a number of examples.

1 Introduction

The majority of properties established during the veri�cation of programs are

either invariants or depend crucially on invariants. Indeed, safety properties can

be reduced to invariant properties, and to prove progress one usually needs to

establish auxiliary invariance properties too. Consequently, the discovery and

strengthening of invariants is a central technique in the analysis and veri�cation

of both sequential programs and reactive systems, especially for in�nite state

systems.

Consider, for example, a program with state variables pc and x. The program
counter pc is interpreted over the control locations inc and dec, and x is inter-

preted over the integers. Initially, the program counter pc is set to inc and x to

0. The dynamics of the system is described in terms of the guarded commands:

pc = inc 7�! x := x+ 2; pc := dec

pc = dec ^ x > 0 7�! x := x� 2; pc2finc; decg

Suppose we are interested in establishing the invariant pc = inc ! x = 0. A

na��ve proof attempt fails, and consequently, the invariant needs to be strength-

ened to an inductive invariant (pc = inc ! x = 0) ^ (pc = dec ! x = 2). Such

strengthenings are typically needed in induction proofs. In general, the main

? The research described in this paper was supported in part by NSF contract CCR-

9712383 and DARPA/AFRL contract F33615-00-C-3043.

T. Margaria and W. Yi (Eds.): TACAS 2001, LNCS 2031, pp. 113{127, 2001.
c
 Springer-Verlag Berlin Heidelberg 2001

114 A. Tiwari, H. Rue�, H. Sa��di, and N. Shankar

principle for proving that a predicate � is an invariant of some program or sys-

tem S, consists in �nding an auxiliary predicate such that is stronger than

� and is inductive; i.e., every initial state of S satis�es , and is preserved

under all transitions. This rule is sound and (relatively) complete. On the other

hand, �nding a strengthening is not always obvious, and usually requires a

microscopic examination of failed veri�cation attempts.

Most approaches for generating and strengthening invariants are based on

symbolic computation of the system at hand [10, 15, 4]. The bottom-up method

performs an abstract forward propagation to compute the set of all reachable

con�gurations, while the top-down method starts from an invariant candidate

� and performs an abstract backward propagation to compute a strengthened

invariant . There is, however, no guarantee for success in exact forward or

backward propagation. This may be due either to in�nite or unmanageably large

con�guration spaces or to the failure to detect convergence of the propagation

methods altogether. Consequently, approximation techniques such as widening

or narrowing [8] are needed to enforce termination of symbolic computation. The

basic idea is to accelerate the convergence of symbolic computations in in�nite

abstract domains.

The framework of abstract interpretation with widening and narrowing as

outlined in [8], however, is not immediately applicable to the discovery and

strengthening of inductive invariants, since not every over-approximation of an

inductive invariant is necessarily an inductive invariant. Our main contribu-

tions are: �rst, we provide an abstract description of the process of inductive
invariant generation and strengthening based on computing under- and over-

approximations of the reachable state set; second, this framework is instantiated

with a novel technique based on combining concrete widening and narrowing

operators. Our techniques can uniformly be used on a wide class of examples in-

cluding transition systems where both forward and backward propagation do not

converge. We demonstrate the e�ectiveness of our approach through a variety of

examples.

Our algorithm is based on the symbolic computation of a sequence of under-

and over-approximations of the reachable state set. These computations rely

heavily on the elimination of quanti�ers in the underlying theory. Quanti�er

elimination, however, is not required to return equivalent formulas, since our al-

gorithm tolerates weakened quanti�er-eliminated formulas. Whenever the com-

putation of the sequence of under-approximations terminates, we get an in-

ductive invariant. Moreover, since every element in the sequence of decreasing

over-approximations is an inductive invariant, our algorithm can be stopped

at any time and it outputs the best (strongest) inductive invariant computed

up to this point. In the example above, our procedure yields the invariant

(pc = inc ! x = 0) ^ (pc = dec ! x = 2).1

The approach faces two problems. First, the computation of the sequence of

under-approximations usually does not terminate. Second, the computation of

1 This example can also be handled by some other invariant generation techniques

based on forward reachability or abstraction [3, 17].

A Technique for Invariant Generation 115

the sequence of over-approximations terminates with very weak invariants, in

practice. For instance, forward reachability does not converge in case the initial

value for x is unspeci�ed in the example above. In order to overcome these prob-

lems we add specialized widening and narrowing operators to our algorithm. One

of the distinguishing features of our algorithm is the use of unreachable con�gu-

rations for detecting unreachable strongly connected components and computing

corresponding narrowing operators. In this way, our algorithm terminates with

the invariant x > �2 in case the initial value for x is unspeci�ed in our running

example.

The paper is structured as follows. In Section 2 we introduce notation and

de�nitions, Section 3 presents the theoretical framework that is used in Section 4

to obtain a procedure for generating invariants using aÆrmation and propagation

rules along with widening and narrowing. Finally, we conclude in Section 5 with a

short investigation of the relationship between invariant generation and abstract

interpretation, and comparisons with related work.

2 Preliminaries

Let � be a �rst-order language containing interpreted symbols for standard

concrete domains like booleans, integers and reals. Let < denote the (�rst-order)

theory of interest over the language �. We �x the set V = fx1; : : : ; xng of

(typed) variables and denote by F the set of �rst-order formulas over � with

free variables contained in the set V. A transition system S is a tuple (V; �; �),
where � 2 F and � is a �rst-order formula over � with free variables contained

in the set V [V 0, where V0 = fx01; : : : ; x
0
ng. The formula � is called the initial

predicate and the formula � a transition predicate of the system S. We shall

denote the sequence x1; : : : ; xn by x and the sequence x01; : : : ; x
0
n by x0.

A state � of a transition system S = (V; �; �) is a mapping from V to values

from the corresponding domains. If � is a state, we denote by �0 the mapping

obtained by renaming variables xi to x
0
i in �. A formula �(x) is interpreted as the

set j[�(x)]j of all states � such that <; � j= �(x). We de�ne the set Reach(�)(�)
of states reachable from the states represented by � via the transition predicate

� as the smallest set such that (i) j[�]j � Reach(�)(�) and (ii) the state � 2
Reach(�)(�) whenever <; �; �0 j= �(x;x0) for some � 2 Reach(�)(�). Since
the theory < is �xed, we shall not mention it explicitly when we talk about

satis�ability and validity in <. Thus, validity in < is denoted by j=.

A formula transformer � is a function mapping formulas to formulas. The

strongest postcondition transformer, denoted by SP(�), is de�ned as SP(�)(�(x))

= 9y:(�(y;x)^�(y)). The formula SP(�)(�(x)) denotes the set of states reach-

able in one step from the set of states represented by �. Similarly, the weakest pre-
condition transformer, WP(�), is de�ned as WP(�)(�(x)) = 8y:(�(x;y)! �(y)).

A �xed point of a formula transformer � is a formula� such that j= � (�)$ �.

A formula transformer � is monotonic if j= � (�)! � () whenever j= �! . A

least �xed point of � , denoted by � :� (), is a �xed point � such that for any

other �xed point of � , it is the case that j= (�!). A greatest �xed point of � ,

116 A. Tiwari, H. Rue�, H. Sa��di, and N. Shankar

denoted by � :� (), is a �xed point � such that for any other �xed point of � ,

it is the case that j= (! �). Whenever the transition system hV; �; �i is clear
from the context, we de�ne the transformer I by I(�) = SP(�)(�)_�. Note that
the transformer I is monotonic. The least �xed point of this operator, � :I(),
whenever it exists in the �rst-order language, represents the set Reach(�)(�) of
reachable states.

2.1 Invariants

A formula � is an S-invariant if Reach(�)(�) � j[�]j. Thus, an invariant describes
an over-approximation of the set of reachable states. An S-inductive invariant
is a formula � such that (i) � is an S-invariant, and (ii) � is inductive, i.e.,

j= SP(�)(�)! �. Condition (ii) can be equivalently stated as j= �! WP(�)(�).

In other words, � is an S-inductive invariant if j= I(�) ! �. Note that the

de�nition does not require an equivalence, but only an implication.

It is easy to establish that the set of reachable states Reach(�)(�) of a system
S represents the strongest (inductive) invariant. By this we mean that if is

any other (inductive) invariant, then, Reach(S)(�) � j[]j. However, note that if
� is an inductive invariant, and j= (� !), then need not be an inductive

invariant because might violate condition (ii). For purposes of this paper, we

will only be interested in inductive invariants. Thus, we are not interested in just

obtaining any over-approximation of the set of reachable states, but only those

that also satisfy condition (ii). This is because the inductive property provides

a suÆcient local characterization of invariance property, which makes the task

of proving easier.

Given a transition system S = (V; �; �), the converse transition system

S�1 = (V; �; ��1) is de�ned by ��1(x;y) = �(y;x). The following well-known

theorem says that if none of the initial states is backward reachable from the

states represented by �, then :� is an invariant.

Theorem 1. Let S = hV; �; �i be a transition system and � an arbitrary for-
mula. If is such that j= (SP(��1)() _ �) ! and the formula � ^ is
unsatis�able, then : is an S-inductive invariant.

Corollary 1. If Reach(��1)(�) \ j[�]j = ;, then the formula corresponding to
the complement of the set Reach(��1)(�) is an S-inductive invariant.

We remark here that although application of the SP(�) transformer is called

\forward propagation", the term \backward propagation" is typically used for

the transformer WP(�). But there is no anomaly here as the transformers SP(��1)

and WP(�) are duals in the sense that SP(��1)(�) is logically equivalent to

:WP(�)(:�). Hence, Theorem 1 can be stated in terms of WP(�). It also follows

that if formula � is an invariant, then the formula � :�^ WP(�)() is an induc-

tive invariant that is a strengthening of �2. Similarly, it is easy to see that there

is a corresponding connection between the SP(�) and WP(��1) transformers.
2 It follows from this duality that the the least (greatest) �xed point iterations of

SP(��1) _ � are logically equivalent to the negations of the greatest (least) �xed

point iterations of WP(�) ^ :�.

A Technique for Invariant Generation 117

3 Inductive Invariant Generation

In this section, we discuss the problem of automatically generating some useful

inductive invariants for a given transition system. It is a simple observation that

the greatest �xed point ��:I(�), whenever it exists, is an S-inductive invariant.

Lemma 1. Let S = hV; �; �i be a transition system. Recursively de�ne the
sequence of formulas �0; �1; : : :, as follows.

�0 = true �i+1 = SP(�)(�i) _�

Then, every formula �i is an S-inductive invariant. Furthermore, every formula
�i in the above sequence can be decomposed as i _ �i, where

 0 = false i+1 = SP(�)(i) _�
�0 = true �i+1 = SP(�)(�i):

The sequence 0; 1; : : : ; represents iterations in a least �xed point computa-

tion of the I transformer. The sequence �0; �1; : : : ; represents the greatest �xed

point component. The formulas i provide successive under-approximations of

the set Reach(�)(�) of reachable states. The formulas �i are inductive over-

approximations. The sequence 0; 1; : : : ; usually does not terminate, whereas

the sequence �0; �1; : : : ; often terminates with very weak invariants.

It should be observed here that the greatest �xed point of the SP(�)() _ �
transformer characterizes states � such that there exists a backward path starting

from � which is either in�nite, or contains some initial state. In case of �nite

state transition systems, this is exactly the set of states that either belong to

a strongly connected component, or, that are reachable from either some initial

state or some strongly connected component. Hence, the greatest �xed point

may not be the strongest S-inductive invariant even in the case of �nite systems.

Despite its shortcomings, this simple method is attractive since (i) we do not

need to detect that the iterations have converged3, and (ii) every formula �i is

an S-inductive invariant. Detecting convergence is diÆcult as it involves deciding

if j= �i $ �i+1.

Example 1. Consider the transition system over ten states presented in Figure 1.

3.1 Widening and Narrowing

In the case when the state space is either in�nite, or �nite but too large, the

symbolic computation of (greatest or least) �xed points of various transformers is

restricted by the �nite space and time resources available. A well-known solution

to this problem is the use of widening and narrowing to respectively enhance the

3 If � is an S-invariant, then every iteration in the greatest �xed point computation

of WP(�)()^ � is also an S-invariant. But, if � is inductive, then this method yields

�.

118 A. Tiwari, H. Rue�, H. Sa��di, and N. Shankar

>> 1

2 3

4

5 6

7

8 9

10

States are represented by nodes with inte-

ger labels and transitions are represented

by edges. State 1 is the initial state.

Clearly, the set of reachable states is the

set

f1; 2; 3; 4g:

The greatest �xed point of the SP(�) _ �

is the set consisting of states

f1; 2; 3; 4; 5; 6; 7; 8; 9g:

Fig. 1. A �nite state transition system.

least and greatest �xed point computation (with gains obtained both in terms

of space and time).

A widening operator 5 : F �F 7! F is a function such that for all formulas

�; �0 2 F , j= (�_�0)!5(�; �0). Similarly, a narrowing operator4 : F�F 7! F
is a function such that for all formulas �; �0 2 F , j= 4(�; �0) ! (� ^ �0). Thus,
logical disjunction _ is a trivial widening operator, and logical conjunction ^ is

a trivial narrowing operator.

The de�nitions of widening and narrowing are slightly di�erent from the

standard ones [8, 9]. First, we do not include any conditions to guarantee that

increasing (decreasing) sequences are transformed to �nite, hence converging,

increasing (decreasing) sequences by widening (narrowing). Secondly, in the case

of narrowing, the standard de�nition requires that whenever �0 ! �, the formula

4(�; �0) is such that �0 !4(�; �0) and 4(�; �0)! �. In our de�nition,4(�; �0)

is stronger than both � and �0 as our interest is in the use of narrowing to obtain

under-approximations of the greatest �xed point. But we have to be careful so as

to not eliminate any reachable states by overly aggressive under-approximation,

see Lemma 3.

A particularly simple narrowing operator, denoted by 4(), is de�ned by

4()(�; �0) = � ^ �0 ^ , where is an arbitrary formula. Similarly, we can

de�ne 5()(�; �0) = � _ �0 _ . Since we are interested in generating inductive

invariants, it turns out that in order to guarantee correctness, we can use any

arbitrary widening operator, but not any narrowing operator.

Lemma 2. [Upward iteration sequence with widening] Let 0; 1; : : : ; be a se-
quence of formulas such that 0 is �, and for every i > 0, either

(i) i is SP(�)(i�1) _ i�1, or
(ii) i is 5(�i)(i�2; i�1), where �i is any arbitrary formula.

Then, if for some n > 0, j= SP(�)(n) ! n, then the formula n is an S-
inductive invariant.

Lemma 3. [Downward iteration sequence with narrowing] Let �0; �1; : : : ; be a
sequence of formulas such that �0 is true, and for every i > 0, either

A Technique for Invariant Generation 119

(i) �i is SP(�)(�i�1) _�, or

(ii) �i is 4(�i)(�i�2; �i�1), where �i is some S-inductive invariant.
Then, for every i, �i is an S-inductive invariant4 such that j= �i ! �i.

Lemma 3 extends the greatest �xed point iterations in Lemma 1 by a nar-

rowing operator. Similarly, Lemma 2 extends the least �xed point computation

that is hidden inside the iterations in Lemma 1 by a widening operator.

We obtain the formula �i used in Lemma 3 by identifying strongly connected

components consisting of unreachable states. This is achieved using backward

propagation from an unreachable state, as outlined in Theorem 1. These un-

reachable states are not automatically eliminated by the greatest �xed point

computation outlined in Lemma 1. Furthermore, an S-inductive invariant ob-

tained using Lemma 2 can be used in Step (ii) of Lemma 3. Thus, Lemma 3

gives a method for systematically strengthening known invariants.

Example 2. Following up on Example 1, let N = f1; 2; : : : ; 10g denote the set

of all states. In order to strengthen the over-approximation, viz. N � f10g, of
the set of reachable states obtained via the greatest �xed point computation, we

can try removing certain states. But if we remove a subset of states that is not

strongly connected, the subsequent �xed point computation may no longer be

monotonic, and could fail to converge.

For instance, removing state 5 from the above set gives a new set N1 =

N � f5; 10g. Now, SP(�)(�N1
) _ �, where �N1

is the characteristic predicate

of N1, represents the set N2 = N � f6; 10g. Clearly, N2 6� N1, and hence the

sequence of formulas obtained in the greatest �xed point computation is no

longer monotonic. Note that all formulas in the sequence are invariants, but

they are not inductive.

In order to identify unreachable states, we note that if we start with the

set N3 = f7; 8g, and we assign � in Theorem 1 to the characteristic predicate

�N3
of N3. The least �xed point of SP(��1) _ �N3

represents the set N4 =

f5; 6; 7; 8;9;10g. Now, since the formula � ^ �N4
is unsatis�able (i.e. the set

f1g\N4 = ;), it follows fromTheorem 1 that the set N5 = f1; 2; 3; 4g represented
by :�N4

is an S-inductive invariant.

4 An Any-Time Algorithm for Generating Inductive

Invariants

The transition predicate � of a transition system S = (V = fx1; : : : ; xng; �; �)
is typically speci�ed using a �nite set of guarded transitions, where a guarded

transition consists of a guard
 2 F , and a �nite set of assignments fx1 :=

e1(x); : : : ; xn := en(x)g. A guarded transition � is written as

 7�! x1 := e1(x); : : : ;xn := en(x)

4 Note that the lemma also holds if we drop the word \inductive" from the statement.

120 A. Tiwari, H. Rue�, H. Sa��di, and N. Shankar

where ei is some expression with free variables in the set x. We shall also use

the compact notation x := e(x) to represent the above assignments.

A typical speci�cation of a guarded transition system contains at least one

control variable, usually the program counter pc 2 fx1; : : : ; xng, which takes

values from a �nite set, say f1; : : : ; pg. Control states are de�ned by formulas

of the form pc = i, i 2 f1; : : : ; pg. This transition system then has p di�erent

control states. Additionally, we assume that the source states of each guarded

transition belong to some �xed source control state, pc = i, (and similarly for

the target states) so that each transition � can be written as

pc = i ^
 7�! x := e(x); pc := j

where x denotes variables in V � fpcg. In this case, we de�ne src(�) = i and

tgt(�) = j. By �� (x;x
0), we denote the formula
(x) ^ x0 = e(x). If T is

a set of such transitions, then the transition predicate � is itself de�ned byW
�2T pc = src(�) ^ pc0 = tgt(�) ^�� . Similarly, we assume that j= �! pc = 1.

Whenever such a decomposition of the state space into �nitely many control

states is available such that every transition has a unique source and target con-

trol state, the S-invariant can be maintained as a conjunction of local invariants

indexed by the control locations. We assume that every formula is represented

as an array of formulas indexed by integers f1; : : : ; pg. Given an S-inductive in-

variant ' (as an array of formulas), and a transition predicate �, the function

propagation(�;�;'; k) returns the strengthened S-inductive invariant Ik(').

function propagation(�;�;'; k) f
let � be pc = 1 ^�0;
for k iterations do: for every i in parallel do f

Ti := f� 2 T : tgt(�) = ig;

'[i] :=

�W
�2Ti

SP(��)('[src(�)]) _�
0 if i = 1W

�2Ti
SP(��)('[src(�)]) if i 6= 1

�
;

'[i] := <-simplify('[i]);
g
return(');

g

The function <-simplify performs quanti�er-elimination and simpli�cation in

the theory < and is described in Section 4.2.

Lemma 4. Let S = (V; �; �) be a transition system and let '0 be an array of
formulas initialized to true. Let 'k denotes the array propagation(�;�; '0; k)

of formulas (assuming <-simplify always returns equivalent formulas), and �k
be as de�ned in Lemma 1. Then, for all k � 0, j= �k $

Vp

i=1(pc = i ! 'k[i]).
Consequently, the formula

Vp

i=1(pc = i! 'k[i]) is an S-inductive invariant, for
every k.

Notice that the formula
Vp

i=1(pc = i ! '[i]) is equivalent to the formulaWp

i=1(pc = i ^ '[i]) under the assumption that
Wp

i=1(pc = i). The computa-

tions outlined in other lemmas and theorems can be suitably cast in terms of

local invariants at control locations.

A Technique for Invariant Generation 121

4.1 Combining SP(�) and SP(��1
) Iterations

The basic algorithm for the automatic generation of inductive invariants con-

sists of aÆrmation and propagation steps|the essence of which is captured in

Lemma 1 and function propagation. In order to get stronger invariants, we

propose the use of narrowing and widening.

The function widening(#; '; k) starts with a given under-approximation #

of the set of reachable states, and widens it using a subformula � of the over-

approximation '. If this widening yields an S-inductive invariant (see Lemma 2)

in k propagation steps, then the function returns this invariant, otherwise it just

returns true5.

function widening(#; '; k) f
� := #;

choose j 2 f1; : : : ; pg and a formula � s.t.

'[j] is of the form '0 _ �, and #[j]^ � is satisfiable;

�[j] := �[j] _ �; /* widening */

� := propagation(�;�; �; k);

if (j= propagation(�;�; �; 1)[i]! �[i] for all i)

return(�); /* new invariant */

return(true);

g

Lemma 5. For any value of the constant k, if � denotes the array of formulas
returned by widening(#; '; k), then the formula

Vp

i=1 pc = i ! �[i] is an S-
inductive invariant.

Strongly connected components of unreachable states are detected using

backward propagation, and if successful, this information is used for strengthen-

ing the current invariant. The subroutine narrowing(#; '; k) chooses a subfor-

mula � of the over-approximation ' which could possibly represent unreachable

states. Thereafter, it computes the set of states that are backward reachable from

the conjectured unreachable states � and if we successfully terminate without

intersecting � (see Theorem 1), then we again have an S-inductive invariant.

function narrowing(#; '; k) f
choose j 2 f1; : : : ; pg and a formula � s.t.

'[j] is of the form '0 _ �, and #[j] ^ � is unsatisfiable;

� := propagation(pc = j ^ �; ��1; false; k);
if (j=propagation(pc = j ^ �; ��1; �; 1)[i]! �[i] for all i)

if (j= :(� ^�))
return(Invariant(:�));

else if (� ^� is satisfiable) /* � is reachable */

return(Reachable(pc = j ^ �));

5 We shall overload true (false) to also denote arrays in which every element is true

(false), and use assignments between arrays to mean element-wise copying.

122 A. Tiwari, H. Rue�, H. Sa��di, and N. Shankar

return(Invariant(true));

g

The return value Reachable() of the function narrowing(#; '; k) says that

the states represented by are reachable, and the return value Invariant()

denotes that the formula represented by is an inductive invariant.

Lemma 6. For any value of the constant k, if the function narrowing(#; '; k)

returns Reachable(), then j[]j � Reach(�)(�). Similarly, for any value of
the constant k, if narrowing(#; '; k) returns Invariant(), then the formulaVp

i=1(pc = i! [i]) is an S-inductive invariant.

Finally, we outline a procedure that uses the various functions described

above by combining the least �xed point and greatest �xed point computations

with narrowing and widening. In the procedure, the formula always stores an

under-approximation of the set of reachable states, and the formula � always

stores an S-inductive invariant. The procedure essentially consists of doing one

of four di�erent steps|(i) Augmenting using propagation(�;�; ; k), where

k is some constant; (ii) Strengthening the current invariant � using the func-

tion propagation(�;�; �; k); (iii) Use of widening on the under-approximation

for generating an invariant; and, (iv) Use of narrowing to detect and eliminate

unreachable states from the over-approximation.

/* Given: S = (V; �; �), a transition system with p control states.

The transition predicate � is indexed by guarded transitions.

k is an upper bound on the number of iterations. */

Procedure InvGen:

�; : Array [1 : : : p] of formula

Initialization:

� := true;

 := false;

repeatedly do the following ff
 := propagation(�;�; ; k);

if (j= propagation(�;�; ; 1)[i]! [i] for all i)

� := ; terminate the program;

g OR f
� := propagation(�;�; �; k);

g OR f
� := � ^ widening(; �; k);

g OR f
if (narrowing(; �; k) returns Reachable(�))

 [j] := [j] _ � where � is pc = j ^ �;
else (assuming narrowing returns Invariant(�))

�[i] := �[i] ^ �[i] for all i;

gg

A Technique for Invariant Generation 123

Theorem 2. Let � be the array of formulas in the procedure InvGen. Then,
at any stage of the procedure, the formula

V
i(pc = i ! �[i]) is an S-inductive

invariant.

Our procedure does not consider the control structure of the transition graph

to generate invariants. Though speci�c control structures, like loops, are not rel-

evant for correctness of the basic procedure, they can be important in choosing

speci�c points for widening or narrowing [6]. We wish to point out that the pro-

cedure is tolerant to theorem proving failures and only assumes a refutationally

complete prover. In particular, note that the satis�ability test in widening can

be eliminated.

4.2 Quanti�er Elimination and Simpli�cation

We remark here that implementation of propagation requires elimination of ex-

istential quanti�ers. The existential quanti�er in SP(��1)(�) and the universal

quanti�er in WP(�)(�) can both be easily eliminated using substitutions. The

quanti�ers in SP(�)(�) and WP(��1)(�) cannot be eliminated so easily in gen-

eral. But in special cases, for instance when the transition is \reversible" (for

example, the e�ect of assignment x := x+ y can be reversed by the assignment

x := x� y), quanti�er elimination reduces to substitution again. In cases where

exact quanti�er elimination is not possible, we can still get a correct procedure

using a quanti�er elimination procedure that returns a \weaker" formula, i.e.,

we do not need an equivalence preserving quanti�er elimination procedure.

Let <-simplify be a function such that j= � ! <-simplify(�). We shall

denote the formula <-simplify(�) by � in the next theorem.

Theorem 3. Let 0; 1; : : : ; i be an upward iteration sequence with widening
and �0; �1; : : : ; �i be a downward iteration sequence with narrowing (see Lem-
mas 2 and 3). Then the sequence 0; 1; : : : ; i; i is also an upward iteration
sequence with widening. Similarly, the sequence �0; �1; : : : ; �i�1; �

0
i, where �

0
i is

�i�1 ^ �i, is also a downward iteration sequence with narrowing.

Note that the formula �0i in Theorem 3 can be seen as results of \narrow-

ing" in the sense of [9]. Theorem 3 makes it possible for simple (and possibly

incomplete) quanti�er elimination procedures to suÆce for our purposes. For

instance, when it is not possible to eliminate the existential quanti�er from

9x:p(x) ^ q(x), we could weaken this to 9x:p(x) ^ 9x:q(x) and perform quanti-

�er elimination on atomic formulas. With suitable modi�cations as outlined in

Theorem 3, our procedure continues to be correct. In fact, such simpli�cations

help in the convergence of the iterations as well.

Finally, as pointed out in Lemma 1, implementation of the above procedure

can be optimized by combining the arrays and � into a single array, say '.

If individual formulas '[i] are always stored in disjunctive normal form, then

we can distinguish the disjuncts that would appear in [i] by marking them.

In this way, a single propagation step can be used to update both and �.

The implementation of the above procedure is being done in the framework of

SAL [1], which is a collection of di�erent tools for analyzing concurrent systems.

124 A. Tiwari, H. Rue�, H. Sa��di, and N. Shankar

4.3 Illustrative Examples

We shall provide certain simple examples to illustrate the procedure. The theory

of interest is the theory of linear arithmetic, and we assume that we have an exact

quanti�er elimination procedure.

Example 3. Consider the example outlined in Section 1. In this case, the least

�xed point sequence converges in two steps. In particular, we obtain the invariant

pc = inc ! x = 0 ^ pc = dec ! x = 2.

Example 4. A simpli�ed version of the Bakery mutual exclusion protocol S =

(V; �; �) for two processes p1 and p2 accessing a critical section cs is given by

V = fy1 : int; y2 : int; pc1 : f1; 2; 3g; pc2 : f1; 2; 3gg, � is pc1 = 1 ^ pc2 =

1^ y1 = 0^y2 = 0, and � is de�ned by the following set of guarded transitions:

pc1 = 1 7�! y1 := y2 + 1; pc1 := 2; // p1: try

pc1 = 2^ (y2 = 0 _ y1 � y2) 7�! pc1 := 3; // p1: enter cs

pc1 = 3 7�! y1 := 0; pc1 := 1; // p1: exit cs

pc2 = 1 7�! y2 := y1 + 1; pc2 := 2; // p2: try

pc2 = 2^ (y1 = 0 _ y2 < y1) 7�! pc2 := 3; // p2: enter cs

pc2 = 3 7�! y2 := 0; pc2 := 1; // p2: exit cs

Since this system has an in�nite number of reachable states, the least �xed point

computation sequence does not converge. We choose to de�ne 9 control locations

based on the values of pc1 and pc2 variables, and we shall use the notation �[i; j]
to denote the current invariant at control location pc1 = i ^ pc2 = j. After a

few iterations, the greatest �xed point iterations yield a formula �, with the

following three local invariants (due to space restrictions, we are not writing

down the complete formula here):

�[3; 1] : y2 = 0

�[3; 2] : (y2 = y1 + 1) _ (y1 = 1 ^ y2 = 0)

�[3; 3] : (y1 = 0 ^ y2 = 1) _ (y1 = 1 ^ y2 = 0)

The disjunct �, de�ned as y1 = 0^y2 = 1, in control location pc1 = 3^pc2 = 3

can be conjectured to be unreachable (as the formula [3; 3] in the least �xed

point iterations is always false) and for a suitable choice of k, the formula

� := propagation(pc1 = 3 ^ pc2 = 3 ^ �; ��1; false; k) contains the following
strongly connected set of unreachable states,

�[3; 3] : y1 = 0 �[3; 2] : y1 = 0 �[2; 3] : y1 = 0

�[3; 1] : y1 = 0 �[2; 2] : y1 = 0 �[2; 1] : y1 = 0

Similarly, we can eliminate the other possibility (y1 = 1 ^ y2 = 0) at control

location pc1 = 3 ^ pc2 = 3. This proves mutual exclusion. We can also use a

single widening step to obtain an inductive invariant strong enough to prove

mutual exclusion. Note that it was pointed out in [5] that the computation of

��:(WP(�)(�) ^ (pc1 = 3 ^ pc2 = 3 ! false)) terminates in a �nite number of

steps and yields an invariant that proves mutual exclusion.

A Technique for Invariant Generation 125

Example 5. Consider the following transitions:

pc = 1 7�! x := x+ 2; y := y + 2; pc := 2;

pc = 2 7�! x := x� 2; y := y + 2; pc := 1;

with initial state predicate pc = 1 ^ x = 0 ^ y = 0. Assuming that the variables

x and y are declared to be integers, neither the least �xed point sequence, nor

the greatest �xed point sequence converges. After a few iterations for computing

the greatest �xed point, the formula � we obtain is:

pc = 1! (x = 0 ^ y = 0) _ (x = 0 ^ y = 4) _ (x � 0 ^ y � 8)

pc = 2! (x = 2 ^ y = 2) _ (x = 2 ^ y = 6) _ (x � 2 ^ y � 10)

The predicate � can be replaced by the predicates = and >. Now, the disjunct �

can be chosen as x > 0^y � 8 and it can be conjectured to be unreachable. The

formula propagation(pc = 1 ^ �; ��1; false; 2) contains the following strongly
connected set of unreachable states,

pc = 1! x > 0 ^ y � 8 pc = 2! x > 2 ^ y � 6

Conjunction of the negation of this formula with the original invariant � gives

the following new invariant,

pc = 1! (x = 0 ^ y = 0) _ (x = 0 ^ y = 4) _ (x = 0 ^ y � 8)

pc = 2! (x = 2 ^ y = 2) _ (x = 2 ^ y = 6) _ (x = 2 ^ y � 10)

As before, in this case again widening can also be used to obtain a similar

invariant.

5 Related Work and Concluding Remarks

Early work [12, 10] on generating invariant for sequential programs has been

extended to the case of reactive systems in [16, 13, 5, 11, 2]. These methods are

usually based on the propagation of invariants through the control structure of

the di�erent components and by combining local invariants of each component

to construct global invariants of the system.

Forward and backward propagation using operators SP(�) and WP(�) is also

used in [5] as the basic technique for generating invariants. In addition, over-

approximations such as the convex hull of the union of polyhedra, are used for

widening �xed point computations. Our approach di�ers in that we consider

simultaneous forward and backward propagation for computing both lower and

upper bounds of the reachable state sets. These bounds are also used for com-

puting suitable narrowing and widening operators. The combination of these

techniques usually yields much stronger invariants. Moreover, our algorithm is

an any-time algorithm, in the sense that it can be interrupted at any time to yield

the most re�ned inductive invariant computed up to the point of interruption.

126 A. Tiwari, H. Rue�, H. Sa��di, and N. Shankar

The method of generalized reaÆrmed invariance and propagation was intro-

duced in [2] and is based on aÆrming local invariants of the form SP(�(�))(true)

and propagating these local invariants along all transitions. This process of af-

�rmation and propagation, however, is performed only in the special case when

all the existential quanti�ers arising in the process are trivial, i.e., when the

quanti�ed variables do not occur in the rest of the formula; the twos example in

the introduction does not possess this property. The technique presented in [2]

also uses information about the control transition graph, especially knowledge

about cycles and how variables are manipulated in the cycle transitions, to gen-

erate stronger invariants. In some cases, these stronger local invariants can be

generated by repeated propagation (in the stronger sense de�ned in this paper).

In general, however, the detection of unreachable cycles is crucial, as outlined in

Theorem 1.

Techniques based on abstraction have also been proposed for generating in-

variants [14,3]. It appears attractive to �rst create (�nite) abstractions for large

programs and then to use standard propagation techniques to obtain the set

of states reachable in the abstract system. This set can then be concretized to

obtain invariants of the concrete system. Abstraction can be cast as a special

widening strategy in our procedure. More speci�cally, let (�;
) be an abstraction

and concretization pair (Galois connection) for a transition system S = (V; �; �).
Let Sa = (Va; �a; �a) denote the abstract transition system. If

 (0)a ; (1)a ; (2)a ; : : :

is a least �xed point computation on the abstract transition system Sa, then one

obtains a corresponding �xed point computation with widening on the concrete

system

 (0); (1); (1
0); (2); (2

0); : : :

as follows: the formula (i) is SP(�)((i�1
0))_ (i�1

0) (Step (i) of Lemma 2), and

 (i
0) is (i)_
(�((i))) (Step (ii) of Lemma 2). Now, if j=
(

(i)
a)$ (i

0), then it

is also the case that j=
(
(i+1)
a)$ (i+1

0). Thus, the �xed point computation on

the abstract transition system can be suitably captured in the concrete system.

We shall not prove this claim here, but refer to [9] for a similar result.

Note that the set of generated invariants is restricted to the ones expressible

in the language of the theory <. A program that performs multiplication by

repeated addition, for example, never uses the multiplication operator, but any

expression that describes the set of reachable states typically would use the

multiplication operator.

In summary, we present a technique for generation of inductive invariants

using a combination of least and greatest �xed point computations of the forward

and backward propagation operators. With obvious modi�cations, the results

can be used to strengthen invariants. Thus, any technique for generation of

invariants, inductive or not, can be incorporated with the techniques in this

paper.

Acknowledgements.We would like to thank S.Bensalem, S.Owre, Y.Lakhnech,

J.Rushby, J. Sifakis, and the referees for their helpful comments.

A Technique for Invariant Generation 127

References

[1] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Mu~noz, S. Owre, H. Rue�,

J. Rushby, V. Rusu, H. Sa��di, N. Shankar, E. Singerman, and A. Ti-

wari. An overview of SAL. In C. M. Holloway, editor, LFM 2000: Fifth

NASA Langley Formal Methods Workshop, pages 187{196, 2000. Available at

http://shemesh.larc.nasa.gov/fm/Lfm2000/Proc/.

[2] S. Bensalem and Y. Lakhnech. Automatic generation of invariants. Formal Meth-

ods in System Design, 15:75{92, 1999.

[3] S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of in�nite state

systems compositionally and automatically. In Proc. of the 9th Conference on

Computer-Aided Veri�cation, CAV'98, LNCS. Springer Verlag, June 1998.

[4] S. Bensalem, Y. Lakhnech, and H. Sa��di. Powerful techniques for the automatic

generation of invariants. In R. Alur and T. A. Henzinger, editors, Computer-Aided

Veri�cation, CAV '96, number 1102 in LNCS, pages 323{335. Springer-Verlag,

1996.

[5] N. Bj�rner, A. Browne, and Z. Manna. Automatic Generation of Invariants and

Intermediate Assertions. Theoretical Computer Science, 1997.

[6] F. Bourdoncle. EÆcient chaotic iteration strategies with widenings. In Proceed-

ings of the Intl Conf on Formal Methods in Programming and their Applications,

volume 735 of LNCS, pages 128{141. Springer Verlag, 1993.

[7] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.

ACM Transactions on Programming Languages and Systems, 16(5):1512{1542,

September 1994.

[8] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for

static analysis of programs by construction or approximation of �xpoints. In 4th

POPL, January 1977.

[9] P. Cousot and R. Cousot. Comparing the Galois connection and widen-

ing/narrowing approaches to abstract interpretation. In M. Bruynooghe and

M. Wirsing, editors, Proc. of the 4th Intl. Symposium on Programming Language

Implementation and Logic Programming (PLILP '92), volume 631 of LNCS, pages

269{295, Berlin, 1992. Springer-Verlag.

[10] S. M. German and B. Wegbreit. A synthesizer of inductive assertions. IEEE

Transactions on Software Engineering, 1(1):68{75, March 1975.

[11] S. Graf and H. Sa��di. Verifying invariants using theorem proving. In Conference

on Computer Aided Veri�cation CAV'96, LNCS 1102, Springer Verlag, 1996.

[12] S. Katz and Z. Manna. Logical analysis of programs. Communications of the

ACM, 19(4):188{206, April 1976.

[13] L. Lamport. The `Hoare logic' of concurrent programs. In Acta Informatica 14,

pages 21{37, 1980.

[14] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property pre-

serving abstractions for the veri�cation of concurrent systems. Formal Methods

in System Design, 6(1), January 1995.

[15] Z. Manna and A. Pnueli. The Temporal Veri�cation of Reactive Systems: Safety.

Springer-Verlag, 1995.

[16] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta

Informatica, 6:319{340, 1976.

[17] H. Sa��di and N. Shankar. Abstract and model check while you prove. In Computer-

Aided Veri�cation, CAV '99, Trento, Italy, July 1999.

http://shemesh.larc.nasa.gov/fm/Lfm2000/Proc/

	Introduction
	Preliminaries
	Invariants

	Inductive Invariant Generation
	Widening and Narrowing

	An Any-Time Algorithm for Generating Inductive Invariants
	Combining PD1OT1cmrcmrmmnnPD1OT1cmrcmrmmnnSP()
and PD1OT1cmrcmrmmnnPD1OT1cmrcmrmmnnSP(-1) Iterations
	Quantifier Elimination and Simplification
	Illustrative Examples

	Related Work and Concluding Remarks

