Abstract
We present new ideas on how to make simulated annealing applicable to the combinatorial optimization problem of accumulating a Jacobian matrix of a given vector function using the minimal number of arithmetic operations. Building on vertex elimination in computational graphs we describe how simulated annealing can be used to find good approximations to the solution of this problem at a reasonable cost.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
B. Averik and R. Carter and J. More, The Minpack-2 Test Problem Collection (Preliminary Version), Mathematical and Computer Science Division, Argonne National Laboratory, Technical Report 150, 1991.
A. Aho, R. Sethi, and J. Ullman, Compilers. Principles, Techniques, and Tools, Addison Wesley, 1986.
M. Berz, C. Bischof, G. Corliss, and A. Griewank, eds., Computational Differentiation: Techniques, Applications, and Tools, SIAM, 1996.
C. Bischof and A. Carle and P. Khademi and A. Maurer, The ADIFOR 2.0 System for Automatic Differentiation of Fortran 77 Programs, IEEE Comp. Sci. & Eng., 3, 3, 1996, 18–32.
C. Bischof and M. Haghighat, Hierarchical Approaches to Automatic Differentiation, in [3], 83–94.
G. Corliss and C. Faure and A. Griewank and L. Hascoet and U. Naumann, eds., Automatic Differentiation-From Simulation to Optimization, LNCS, Springer, 2001, to appear.
G. Corliss and A. Griewank, eds., Automatic Differentiation: Theory, Implementation, and Application, SIAM, 1991.
A. Curtis, M. Powell and J. Reid, On the Estimation of Sparse Jacobian Matrices, J. Inst. Math. Appl., 13, 1974, 117–94.
M. Garey and D. Johnson, Computers and Intractability-A Guide to the Theory of NP-completeness, W. H. Freeman and Company, 1979.
A. Griewank, Evaluating Derivatives, Principles and Techniques of Algorithmic Differentiation, Frontiers in Appl. Math., 19, SIAM, 2000.
A. Griewank and S. Reese, On the Calculation of Jacobian Matrices by the Markowitz Rule, in [7], 126–135.
B. Hajek,Cooling Schedules for Optimal Annealing, Mathem. Oper. Res., 13, 1998, 311–329.
K. Herley, Presentation at: Theory Institute on Combinatorial Challenges in Computational Differentiation, MCSD, Argonne National Laboratory, 1993.
R. Jessani and M. Putrino, Comparison of Single-and Dual-Pass Multiply-Add Fused Floating-Point Units, IEEE Transactions on Computers, 47, 9, 1998.
S. Lin, Bell System Technical Journal, 44, 1965, 2245–2269.
W. Miller and C. Wrathall, Software for Roundoff Analysis of Matrix Algorithms, Academic Press, 1980.
N. Metropolis and A.W. Rosenbluth and M.N. Rosenbluth and A.H. Teller and E. Teller, Equation of State Calculations by Fast Computing Machines, J. Chem. Phys., 21, 1953, 1087–92.
U. Naumann and B. Christianson, Differentiation Enabled Compiler Technology, MOD/DERA/EPSRC grant, GR/R55252.
U. Naumann, Efficient Calculation of Jacobian Matrices by Optimized Application of the Chain Rule to Computational Graphs Ph.D. thesis, Technical University Dresden, 1999.
U. Naumann, Optimized Jacobian Accumulation Techniques, in N. Mastorakis, Ed., Problems in Modern Applied Mathematics, WSES Press, 2000.
U. Naumann, An Enhanced Markowitz Rule for Accumulating Jacobians Efficiently, Proceedings of Algorithmy 2000, Slovak University of Technology, 2000.
U. Naumann, Elimination Techniques for Cheap Jacobians, in [6].
U. Naumann, Cheaper Jacobians by Simulated Annealing, to appear in SIAM J. Opt.
U. Naumann, Elimination Methods for Computational Graphs. On the Optimal Accumulation of Jacobian Matrices-Conceptual Framework., submitted to Math. Prog.
G. Newsam and J. Ramsdell, Estimation of Sparse Jacobian Matrices, SIAM J. Alg. Dis. Meth., 4, 1983, 404–417.
U. Naumann, S. A. Forth, M. Tadjouddine, and J. D. Pryce, A Standard Interface for Elimination Sequences in Automatic Differentiation, AMOR Report 2001/03, Cranfield Univ. (RMCS Shrivenham), 2001.
D. J. Rose and R. E. Tarjan, Algorithmic Aspects of Vertex Elimination on Directed Graphs, SIAM J. Appl. Math., 34, 1, 1978, 176–197.
M. Tadjouddine, S. A. Forth, and J. D. Pryce, AD Tools and Prospects for Optimal AD in CFD Flux Jacobian Calculations, in [6].
P. Van Laarhoven and E. Aarts, Simulated Annealing: Theory and Applications, Reidel, 1988.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Naumann, U., Gottschling, P. (2001). Prospects for Simulated Annealing Algorithms in Automatic Differentiation. In: Steinhöfel, K. (eds) Stochastic Algorithms: Foundations and Applications. SAGA 2001. Lecture Notes in Computer Science, vol 2264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45322-9_9
Download citation
DOI: https://doi.org/10.1007/3-540-45322-9_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43025-4
Online ISBN: 978-3-540-45322-2
eBook Packages: Springer Book Archive