Skip to main content

Prospects for Simulated Annealing Algorithms in Automatic Differentiation

  • Conference paper
  • First Online:
Stochastic Algorithms: Foundations and Applications (SAGA 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2264))

Included in the following conference series:

Abstract

We present new ideas on how to make simulated annealing applicable to the combinatorial optimization problem of accumulating a Jacobian matrix of a given vector function using the minimal number of arithmetic operations. Building on vertex elimination in computational graphs we describe how simulated annealing can be used to find good approximations to the solution of this problem at a reasonable cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Averik and R. Carter and J. More, The Minpack-2 Test Problem Collection (Preliminary Version), Mathematical and Computer Science Division, Argonne National Laboratory, Technical Report 150, 1991.

    Google Scholar 

  2. A. Aho, R. Sethi, and J. Ullman, Compilers. Principles, Techniques, and Tools, Addison Wesley, 1986.

    Google Scholar 

  3. M. Berz, C. Bischof, G. Corliss, and A. Griewank, eds., Computational Differentiation: Techniques, Applications, and Tools, SIAM, 1996.

    Google Scholar 

  4. C. Bischof and A. Carle and P. Khademi and A. Maurer, The ADIFOR 2.0 System for Automatic Differentiation of Fortran 77 Programs, IEEE Comp. Sci. & Eng., 3, 3, 1996, 18–32.

    Article  Google Scholar 

  5. C. Bischof and M. Haghighat, Hierarchical Approaches to Automatic Differentiation, in [3], 83–94.

    Google Scholar 

  6. G. Corliss and C. Faure and A. Griewank and L. Hascoet and U. Naumann, eds., Automatic Differentiation-From Simulation to Optimization, LNCS, Springer, 2001, to appear.

    Google Scholar 

  7. G. Corliss and A. Griewank, eds., Automatic Differentiation: Theory, Implementation, and Application, SIAM, 1991.

    Google Scholar 

  8. A. Curtis, M. Powell and J. Reid, On the Estimation of Sparse Jacobian Matrices, J. Inst. Math. Appl., 13, 1974, 117–94.

    MATH  Google Scholar 

  9. M. Garey and D. Johnson, Computers and Intractability-A Guide to the Theory of NP-completeness, W. H. Freeman and Company, 1979.

    Google Scholar 

  10. A. Griewank, Evaluating Derivatives, Principles and Techniques of Algorithmic Differentiation, Frontiers in Appl. Math., 19, SIAM, 2000.

    Google Scholar 

  11. A. Griewank and S. Reese, On the Calculation of Jacobian Matrices by the Markowitz Rule, in [7], 126–135.

    Google Scholar 

  12. B. Hajek,Cooling Schedules for Optimal Annealing, Mathem. Oper. Res., 13, 1998, 311–329.

    Google Scholar 

  13. K. Herley, Presentation at: Theory Institute on Combinatorial Challenges in Computational Differentiation, MCSD, Argonne National Laboratory, 1993.

    Google Scholar 

  14. R. Jessani and M. Putrino, Comparison of Single-and Dual-Pass Multiply-Add Fused Floating-Point Units, IEEE Transactions on Computers, 47, 9, 1998.

    Google Scholar 

  15. S. Lin, Bell System Technical Journal, 44, 1965, 2245–2269.

    MATH  MathSciNet  Google Scholar 

  16. W. Miller and C. Wrathall, Software for Roundoff Analysis of Matrix Algorithms, Academic Press, 1980.

    Google Scholar 

  17. N. Metropolis and A.W. Rosenbluth and M.N. Rosenbluth and A.H. Teller and E. Teller, Equation of State Calculations by Fast Computing Machines, J. Chem. Phys., 21, 1953, 1087–92.

    Article  Google Scholar 

  18. U. Naumann and B. Christianson, Differentiation Enabled Compiler Technology, MOD/DERA/EPSRC grant, GR/R55252.

    Google Scholar 

  19. U. Naumann, Efficient Calculation of Jacobian Matrices by Optimized Application of the Chain Rule to Computational Graphs Ph.D. thesis, Technical University Dresden, 1999.

    Google Scholar 

  20. U. Naumann, Optimized Jacobian Accumulation Techniques, in N. Mastorakis, Ed., Problems in Modern Applied Mathematics, WSES Press, 2000.

    Google Scholar 

  21. U. Naumann, An Enhanced Markowitz Rule for Accumulating Jacobians Efficiently, Proceedings of Algorithmy 2000, Slovak University of Technology, 2000.

    Google Scholar 

  22. U. Naumann, Elimination Techniques for Cheap Jacobians, in [6].

    Google Scholar 

  23. U. Naumann, Cheaper Jacobians by Simulated Annealing, to appear in SIAM J. Opt.

    Google Scholar 

  24. U. Naumann, Elimination Methods for Computational Graphs. On the Optimal Accumulation of Jacobian Matrices-Conceptual Framework., submitted to Math. Prog.

    Google Scholar 

  25. G. Newsam and J. Ramsdell, Estimation of Sparse Jacobian Matrices, SIAM J. Alg. Dis. Meth., 4, 1983, 404–417.

    Article  MATH  MathSciNet  Google Scholar 

  26. U. Naumann, S. A. Forth, M. Tadjouddine, and J. D. Pryce, A Standard Interface for Elimination Sequences in Automatic Differentiation, AMOR Report 2001/03, Cranfield Univ. (RMCS Shrivenham), 2001.

    Google Scholar 

  27. D. J. Rose and R. E. Tarjan, Algorithmic Aspects of Vertex Elimination on Directed Graphs, SIAM J. Appl. Math., 34, 1, 1978, 176–197.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Tadjouddine, S. A. Forth, and J. D. Pryce, AD Tools and Prospects for Optimal AD in CFD Flux Jacobian Calculations, in [6].

    Google Scholar 

  29. P. Van Laarhoven and E. Aarts, Simulated Annealing: Theory and Applications, Reidel, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Naumann, U., Gottschling, P. (2001). Prospects for Simulated Annealing Algorithms in Automatic Differentiation. In: Steinhöfel, K. (eds) Stochastic Algorithms: Foundations and Applications. SAGA 2001. Lecture Notes in Computer Science, vol 2264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45322-9_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45322-9_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43025-4

  • Online ISBN: 978-3-540-45322-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics