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Abstract. This paper presents a stochastic segmental speech recognizer that mod-
els the a posteriori probabilities directly. The main issues concerning the system
are segmental phoneme classification, utterance-level aggregation and the prun-
ing of the search space. For phoneme classification artificial neural networks and
support vector machines are applied. Phonemic segmentation and utterance-level
aggregation is performed with the aid of anti-phoneme modeling. At the phoneme
level the system convincingly outperforms the HMM system trained on the same
corpus, while at the word level it attains the performance of the HMM system
trained without embedded training.

1 Introduction

The currently most popular stochastic approach to automatic speech recognition sta-
tistically models the joint distribution P (W,A) of the acoustic observations A and the
possible transcriptions W . During recognition an incoming signal is identified as the
transcription with the maximum a posteriori probability, so the result is

W ∗ = arg max
W

P (W |A) = arg max
W

P (A|W )P (W ), (1)

where the latter, decomposed form is derived using Bayes’ formula.We will call those
models that use this decomposed form and work with P (A|W ) “generative”.

We know about very few systems that model P (W |A) directly. Some authors refer
to these as “recognition”[6], or “perception”[5] (vs. “production”) models. Owing to
the lack of a commonly accepted name we will call these models “discriminative”, in
accordance with general pattern recognition terminology. Since this may be misleading
(generative models can be trained discriminatively as well), we should stress here that
we use this naming for the models and not necessarily their training technique.

This paper describes a segment-based recognizer built on discriminatively trained
segmental classifiers. Section 2 discusses the segmental framework in general. Section
3 then describes the phoneme classifier and related issues, while Section 4 presents our
results. The paper closes with concluding remarks and planned future developments.

2 Segment-Based Recognition

In the following we suppose that a speech signal A is given as a series of frame-based
observation vectors A = a1a2...aT , while the possible transcriptions W are given as



series of phonemic labels W = w1w2...wn. We will model the conditional probability
P (W |A) in a decomposed form, as we want to keep our system general enough for
continuous speech recognition as well. In our framework P (W |A) is decomposed as

P (W |A) =
∏

i

P (wi|A) =
∏

i

P (wi|Ai), (2)

where the first equation covers the assumption that the phonemes are independent (we
presume phonetic correlation to be modeled by an independent language model), and
the second equation reflects the assumption that the identity of a particular phoneme wi

depends only on a particular segment Ai = ajaj+1aj+t. The phonemic probabilities
P (wi|Ai) can then be trained on a manually segmented and labeled corpus. The learn-
ing algorithms that are used to model P (wi|Ai) will be called the ”phoneme classifier”,
which will be discussed in the next section.

Equation (2) implicitly assumes that we know the phonetic segmentation of the
signal. However, since automatic segmentation cannot be done reliably, we have to
evaluate many possible segmentations S during recognition. This means that we work
with P (W,S|A) from which S has to be finally removed by marginalization. Formally,

P (W |A) =
∑

S

P (W,S|A) =
∑

S

P (W |S,A)P (S|A) ≈ max
S

P (W |S,A)P (S|A).

(3)
For a given S, P (W |S,A) can be calculated using equation (2). The more problematic
issue is with P (S|A). From a practical viewpoint it gives a weighting of the phoneme
models that normalizes the different segmentation paths. One might try a heuristic “ag-
gregation function” to combine the classifier outputs, but a bad strategy could lead to
errors like the preference of short or long words. The most popular solution for avoid-
ing the problems associated with P (S|A) is to run a frame-based (e.g. HMM) rec-
ognizer, and re-score only the N best paths by the segmental phoneme models[11].
We, however, wanted to model P (S|A) with discriminative classifiers, for which we
trained segmental probabilities P (si|Ai). In this two-class training the phonemes of
the manually labeled corpus acted as positive examples for the class “phoneme”, while
(quasi-)randomly cut pieces of the database served as examples of the “anti-phoneme”,
whose class thus covers any segment that is a part of or a composite of some phonemic
segments. One motivation for approximating P (S|A) from the phoneme/anti-phoneme
probabilities was that it made it possible to train P (si|Ai) and P (wi|Ai) on the same
features. This allowed us to unite the two classifiers into one, which considerably de-
creased the computational costs.

The simplest way to approximate P (S|A) from the values P (si|Ai) is

P (S|A) =
∏

si∈S

P (si|Ai). (4)

Unfortunately, this formula does not guarantee proper normalization between different
segmentations. For this all segments should be considered, like in

P (S|A) =
∏

si∈S

P (si|Ai)
∏

sj∈S

(1− P (sj |Aj)), (5)



where S denotes the set of all other segments that occur in any other segmentation.
However, the space of all segments is prohibitively large. So we approximated the sec-
ond product in (5) by considering only those elements of S that are “near-misses” of the
elements of S. More precisely, for a given segment s ∈ S we utilized the anti-phoneme
probability of the two nearest segments in S that overlap either boundaries of s. To get
the best performance these probabilities had to be raised to empirically chosen powers
(indicating that these values represent also those segments not utilized explicitly).

As the third important issue concerning segmental recognition, we stress that the
approximation of the sum with the best segmentation in (3) turns the summation into
a search problem. In contrast to an HMM system where the probabilities belonging
to different state sequences can be evaluated efficiently by dynamic programming, in
segmental models the probability of a segment cannot be simply composed from the
probabilities of “sub-segments” (i.e. frames), but need a call to the classifier. Thus for
acceptable execution speed the effective pruning of the space of possible segmentations
is crucial. Our system performs a depth-first search to find the best segmentation of an
utterance. When a leaf is reached in the search space, its probability value serves as
a threshold to avoid traversing less promising segmentation paths. In this way, on the
average, the system can find the N best segmentations quite efficiently.

Finally, the number of possible segmentations can be reduced drastically by the
application of a signal processing algorithm that segments the utterance based on local
changes in the spectrum. When choosing the parameters for such an algorithm, one
should bear in mind that insertion errors only increase the search space, but deletion
errors have the risk of completely misrecognizing the utterance in question.

3 Discriminative Phoneme Classification

3.1 Segmental Features

Although there are many sophisticated segmental models offered in the literature (e.g.
[1]), we used a simple technique similar to that of the SUMMIT system[3]. At the frame
level the speech signals were represented by their critical-band log-energies, and the
averages of the 24 critical-band log-energies of the segment thirds (divided in a 1-2-1
ratio) were used as segmental features for phoneme classification. The advantage of this
method is that it needs only trifling additional calculations following the computation of
the frame-based features. Moreover, it returns the same number of segmental features
independent of the segment length, which was a prerequisite for the classifiers used.

Besides phoneme classification, we also needed features that discriminate phonemes
from anti-phonemes. We used the variances of the features along the segments to filter
out candidates that contain boundaries inside them, and the derivatives of the features at
the boundaries to remove candidates with improbable start and end-points. These seg-
mental features were calculated only on 4 wide frequency bands, as it proved sufficient.

A special segmental feature is the duration of the phoneme. We consider it espe-
cially important for languages like Hungarian where phonemic duration can play a dis-
criminative role. As our preliminary experiments found duration to be useful indeed, it
was employed as a segmental feature in all our experiments. Thus, including duration,
77 features altogether were used to represent the segments.



3.2 Feature Space Transformations

A special problem with discriminative segmental models is that since the observations
are from a continuous space, contextual variability cannot simply be addressed by tri-
phone models, as is usual with generative modeling. Furthermore, since the number of
features increases the computational cost of most classifiers non-linearly, it should be
kept as low as possible. For these reasons we attach great importance to feature space
transformation methods. These methods may aid classification performance and can
also reduce the dimensionality of the data. Linear discriminant analysis (LDA), prin-
cipal component analysis (PCA) and independent component analysis (ICA) are the
traditional (linear) transformation techniques [2][8]. Recently the non-linear version of
these linear transformations have become a popular research topic in statistical learn-
ing theory. We performed experiments applying the so-called “Kernel non-linearization
idea”[10][8] on LDA. Rather than going into mathematical details, we demonstrate the
effect of this transformation on two artificially generated data sets, both consisting of
two classes. Figure 1 shows that in both cases the otherwise interweaving classes be-
come separable by one straight line after the transformation (the sets were encircled
only for the ease of visualization).
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Fig. 1. The effect of Kernel-LDA on two point sets, both consisting of two classes

3.3 Classifiers

It is known that artificial neural networks (ANN), under proper conditions, can be used
to approximate a posteriori probabilities[7]. In a previous study [4] we also found ANNs
to be the best for phoneme classification. In the experiments below “ANN” means three-
layer MLPs trained with back-propagation. The number of hidden neurons was 150 in
the phoneme classification, and 50 in the phoneme/anti-phoneme classification tests.

For the classification task we also experimented with a promising new technique
called support vector machines (SVM). Owing to the lack of space we refer the inter-
ested reader to Vapnik[10] for an overview on SVM. In all the experiments with SVM
a second-order polynomial kernel function was applied.

4 Experimental Results

We evaluated our system on a small corpus, where the training set consisted of 20,
while the test set of 6 talkers pronouncing 52-52 Hungarian numbers. The recordings



were of reasonably good quality, sampled and quantized at 22050 Hz, 16-bit. The whole
database was manually segmented and labeled. Because of the restricted domain, the
corpus contained only 28 different phonemic labels.

For a comparison, an HMM system was also trained on the same corpus using
monophone models (the corpus is too small to train triphones). The description of the
HMM recognizer can be found at Szarvas[9].

4.1 Phoneme-Level Results

Table 1 shows the segmental classification errors. In the case of the phoneme classifi-
cation (28 classes) we have a comparative result from the HMM which shows that the
segmental discriminative models give significantly better results. In addition, one can
notice that the classifiers attained the same performance after LDA and K-LDA, in spite
of the transformations considerably reducing the number of features. Similar observa-
tions hold for the phoneme plus anti-phoneme (29 classes) and phoneme/anti-phoneme
classification tasks (in the latter case no transformation was applied, as there were only
two classes).

No transf. LDA K-LDA
(77 feat.) ( 27 feat.) (27 feat.)

28 HMM 9.34% — —
phone- ANN 7.78% 7.81% 5.79%

mes SVM 5.81% 5.12% 4.59%

28 ph. ANN 6.78% 6.87% 6.54%
+ antiph. SVM 7.90% 6.14% 5.89%

phoneme/ ANN 6.92% — —
antiph. SVM 5.10% — —

Table 1. Segmental classification error rates

4.2 Word-Level Results

Table 4 shows the error rates on the word level (all experiments were performed with
ANN classifiers). The first column shows the error rate when the recognizer examined
all possible segments that can be composed from 5-frame chunks of the signal. The
result is comparable with the performance of the HMM (without embedded training),
but the runtime was over an order of magnitude worse.

The result in the second column was attained when the recognizer used only the
segments found by an algorithm that looked for local changes in the spectrum. On the
average this algorithm cut a phoneme into only 1.84 pieces. Runtime with this search
space reduction was close to real-time, but unfortunately the error rate became more
than double. Visual inspection showed that almost all new errors were caused by dele-
tion errors in the automatic segmentation.

Finally, we ran an experiment substituting the manual segmentation in place of
the automatic segmentation mentioned above. Surprisingly, we got worse results than
with the 5-frame “fake-segmentation”, which indicates that the manual segmentation in
many cases does not coincide with the boundaries suggested by the acoustic features.



From this we concluded that a version of the expectation-maximization algorithm (that
is iterative “recognize-and-retrain” loops) could significantly improve the system’s per-
formance. The fact that the HMM performed much better with embedded training than
with training on the manual segmentation also reinforces this assumption.

Segmental Model HMM
5-frame segm. Autom. segm. Manual segm. No embed. tr. Embedded tr.

1.28% 3.20% 1.92% 1.60% 0.32%

Table 2. Word error rates

5 Conclusion

From our results (and the similar ones found in the literature) we conclude that although
segmental models can quite easily outperform HMM on the phoneme level, this gain can
be easily lost on the utterance level. In our case it means that a better aggregation strat-
egy, that is a better approximation of P (S|A) must be found – preferably one that can
be trained discriminatively at the utterance level. Also, to reach acceptable execution
speed we have to look for some better pruning methods, since the spectrally-based seg-
mentation algorithm proved unreliable, and doing a full search (using the 5-frame fake
segments) is very slow. Implementation of an iterative training algorithm also promises
much improvement. Finally, this far we used only a fixed vocabulary, so an interesting
question is the integration with a probabilistic language model, which quite probably
needs some different technique than in the case of an HMM system.
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