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Abstract: To meet the timing requirements set by the RoboCup soccer server
simulator, this paper proposes a multi-threaded approach to simulated soccer
agents for the RoboCup competition. At its higher level each agent works at
three distinct phases: sensing, thinking and acting. Instead of the traditional
single threaded approaches, POSIX threads have been used here to break down
these phases and implement them concurrently. The details of how this parallel
implementation can significantly improve the agent’s responsiveness and its
overall performance are described. Implementation results show that a multi-
threaded approach clearly outperforms a single-threaded one in terms of
efficiency, responsiveness and scalability. The proposed approach will be very
efficient in multi-processor systems.

1. Introduction

The creation of the robotic soccer, the robot world cup initiative (RoboCup), is an
attempt to foster Al and intelligent robotics research by providing a standard problem
where wide range of technologies can be integrated and examined [6][7]. Some of the
fields covered include multi-agent collaboration, strategy acquisition, real-time
planning and reasoning, sensor fusion, strategic decision making, intelligent robot
control, and machine learning. Given the nature of the RoboCup environment, the
response time of a soccer agent becomes significantly important since the soccer
server operates with 100ms cycles for executing actions and 150ms cycles for
providing visual sensory data [10]. In addition to that, auditory sensory data can be
received at completely random intervals. It is vital that each agent has bounded
response times. If an action is not generated within 100ms, then the agent will stay
idle for that cycle and enemy agents that did act might gain an advantage. On the
other hand, if more than one action is generated per cycle, the server will only execute
one of them randomly, which might result to a non-optimal solution. An additional
constraint is that Unix is not a “true” real-time system and hence real-time
performance and response can only be guaranteed up to a certain resolution [12].

A real-time system is a system in which the time that output is produced is
significant. In other words, a real-time system should be able to respond to stimuli
from its environment within fixed time limits [4]. This is particularly true for the
RoboCup simulator agents since each of them must react within an interval of 100ms,
therefore achieving real-time performance. For a non real-time agent the desired
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behaviour is focused on the logical correctness of the result. In contrast, a real-time
agent requires both logical and timing correctness. There are two broad categories of
real-time agents: hard real-time agents and soft real-time agents [1]. For hard real-
time agents, timing correctness is of critical importance and should never be
sacrificed for other gains. In contrast, timing correctness in soft real-time agents is
important but not critical. An occasional failure to meet a deadline should not result
in catastrophic consequences.

Another distinction between real-time agents is whether their responses are based
on events or clock times. This classification is of particular importance at the
implementation level. Event-triggered agents respond to external stimuli by first
detecting various conditions and then generating the appropriate reactions
dynamically. Time-triggered agents operate in accordance with clock times as shown
by an independent clock. In other words, clock pulses are treated as signals that
generate certain actions. An appropriate action is selected based on the current state
of the environment perceived by the agent.

This paper considers robotic soccer agents as hard, time-triggered real-time agents,
and will only focus on how to improve the real-time performance of the soccer agents.
Real-time systems are a large topic and a more detailed description of real-time
systems can be found in [1][9]. In the rest of this paper, a few design issues regarding
the agent architectures are discussed in the next section. Section 3 illustrates how
single-threaded implementations have been developed, and then presents the proposed
multi-threaded implementation. Section 4 shows experiment results and compares the
two approaches. Finally, conclusions are given in section 5.

2. System Design

2.1 Agent Requirements

The robotic soccer simulator is a client/server application in which each client
communicates with the server via a UDP (User Datagram Protocol) socket [10]. The
server is responsible for executing requests from each client and updating the
environment. At regular 150ms time intervals the server broadcasts visual
information to all clients depending on their position, the quality and size of the field
of their view, and their facing direction on the field. Moreover, the server sends
auditory information to various clients at random time intervals.

After processing the sensory data, the clients respond by sending action requests to
the server from a set of primitive actions available to them. To avoid message
congestion on the server, the clients are allowed to send one request per cycle
(100ms). If no message is sent within this cycle, the client will not perform any
actions. If more than one message is send during the same cycle, the server executes
only one randomly, which may produce undesired results. The server updates the
state of the environment by serially executing each request. The results are projected
on a window shown in figure 1.

It is important to mention that UDP sockets have a limited receive buffer.
Messages arriving on a UDP socket will be queued until the receiving buffer is full in
which case additional messages will be discarded. A client that fails to retrieve the
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Figure 1 Robot Soccer Simulator

messages at the rate that they arrive is in danger of receiving older information from

the server, since newer data will be further back in the queue. This will cause the

client to create the wrong representation about the current state of the environment,
leading to undesired effects when the wrong actions are executed.

The term “client”, used in the client/server application context above, is the real-
time agent to be built. For each cycle, the agent receives data from the server (if new
data is available), processes this data, and produces an action. A very basic model of
an agent’s loop can be seen in figure 2. When new data is available, the agent should
receive this data and update the current state of the environment. It should then
“think” and send an action to the server. To be efficient an agent should satisfy the
following conditions:

e To receive the newest sensory data that arrives on the socket as quickly as possible,
and do not let data queue up. This enables the agent to have the most recent
representation of the environment, and hence execute the most appropriate action.

e To send the action requests to the server timely, i.e. only one request/cycle. If the
agent sends more than one request per cycle, the server will only execute one
randomly. Otherwise, it might miss a cycle if it is too slow.

e To allow the maximum time for the thinking process and the minimum time to
send or receive data.

Given the frequency of the message exchange and the timing constraints, building
an agent that will satisfy the conditions described above becomes a challenging task.
A brief description of the available I/O models under Unix and the agent architecture
is briefly reviewed here.

2.2 I/0 Models

Since the client/server communication is done via UDP sockets, there are a number of
different ways to handle input and output on these sockets. Unix provides five I/O
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models: blocking I/O, non-blocking I/0O, I/O multiplexing, signal-driven I/O, and

asynchronous I/0. For the shake of completeness each I/O model is briefly

introduced here. A more detailed description can be found in [12].

e Blocking 1/0 mode is the default mode for all sockets under Unix, which means
that requesting data from a socket will not return until data is available. In other
words, the whole process will be put to sleep until new data arrives or an error
occurs.

e Non-blocking 1/0 mode avoids putting the process to sleep. If data is not
immediately available, the kernel returns an error message, such as
EWOULDBLOCK. The process will not be blocked and data can be requested at a
later stage.

e Multiplexing 1/0 mode is achieved by using either the select or poll system calls.
This method will block in one of these two calls rather than blocking at the actual
I/O system call. When select returns, the socket is readable and the rcvfrom
function is called to copy the data into the application buffer.

e Signal-driven 1/0 mode enables the kernel to notify the process with a (SIGIO)
signal when a descriptor is ready. To read the data from the socket the process
needs to establish a signal handler for the (SIGIO) signal. To send actions to the
server, an interval timer that generates a (SIGALRM) signal when it expires can be
used. By setting the timer to 100ms and using a handler that sends actions to the
server the accuracy is guaranteed within certain limits.

e Asynchronous I/O mode enables the kernel to notify the process when the entire
I/O operation is complete. The difference with the signal-driven I/O is that the
kernel tells the process when an I/O operation is complete rather than an operation
can be initiated. Asynchronous I/O is not very widely used primarily because of
support issues.

2.3 Agent Architecture

Given this variety of I/O models supported under Unix, choosing an I/O model
heavily depends upon the inner structure of the agent. In this section a novel
architecture for building RoboCup agents is presented. Basically the agent contains
six different modules as shown in figure 3, namely the agent’s sensors, a set of
behaviours, the actuators, the current play mode, a set of predefined parameters, and a
memory module. The dashed arrows between the agent and the server in this diagram
represent the communication links. The server sends information received by the
agent’s “Sensors” module and the agent sends actions back to the server through its
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Figure 3 Block Diagram of the Soccer Agent’s Structure

“Actuators” module. The solid arrows give dependence relationships between the
modules. More specifically, the output produced by the “Actuators” module is
directly dependent upon the input it will receive from the “Behaviours” module. The
rest of the modules within the agent affect the “Behaviours” module. A brief
description for each of these modules is given below.

Sensors -- are responsible for receiving and analysing the visual or auditory
information transmitted by the server. After receiving the data for each cycle, the
agent creates a representation for the current state of the environment. Due to the
limited field of view, the agent updates only part of the environment in each cycle.
When new information arrives from the server, the old information is passed to the
memory module, which holds a probabilistic representation for the whole
environment.

Behaviours -- is the most important module within the agent. It is responsible for
generating actions according to the current state of the environment. The state of
the environment is determined using all the modules within the agent apart from
the actuators. Normally the agent needs to gather information from all other
modules before an action is generated, including data regarding the agent’s
position and role in the team, the current formation, the position of the ball and
other agents, the current play mode and so on. The “Behaviours” module should
process all this information and determine the best course of action.

Actuators -- are responsible for timing, and sending actions to the server. As
mentioned earlier the server accepts one action each 100ms. The actuators receive
an action (or a set of actions) from the “Behaviours” module, and send them to the
server.

Play Mode -- holds and updates the current play mode using the information
received by the “Sensors” module. The current play mode directly affects the
behaviour of the agent. For example the agent is expected to act differently if a
free kick has been won for its team or if the opposition has won a corner kick.
Parameters -- hold information regarding various settings both for the server and
the agent. The parameters affect the behaviours of the agent since they include
information regarding the current formation, the role of the agent in the team, and
most of the server parameters including use of offside rule, player’s size and
maximum speed.

Memory -- is a representation of the whole soccer pitch, rather than a partial
representation like the one provided by the sensors. The “Pitch” contains players,
lines, flags, goals and a ball. Each of these objects is associated with a confidence
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value that represents the agent’s confidence that an object is at the current co-
ordinates. If an object was seen in the last cycle, its confidence value is 1.
Otherwise, this value is multiplied by a confidence decay constant for every cycle
that the object has not been seen. When the confidence value falls under a certain
threshold the object is “forgotten”.

3. System Implementation

This section is to describe the single-threaded models used so far and the multi-
threaded approach being proposed for the RoboCup simulator agents. This paper
focuses on POSIX threads that are the thread application-programming interface
(API) specified by the standard POSIX 1003.1c-1995 [1][2]. Although POSIX
threads are used in this implementation for portability reasons, the higher level design
can be implemented in any system with any threads API.

3.1 Single-threaded approach

According to [2] a thread is the set of properties that suggest “continuousness and
sequence” within a machine. In other words when a program is executed, a process is
created. This process can be thought of as a single “thread” of execution. Of course a
process has many additional properties like its own address space, file descriptors and
various other data. Up to date, the majority of the implementations in the RoboCup
simulation league have been single-threaded (e.g. CMUnited [13], ATHumboldt [3],
Andhill). This essentially means that the initial process generated by the executable
file does not create any additional threads. All computations are performed in a serial
manner. If a given operation requires that the process is put to sleep (e.g. a blocking
read when no data is available), then the whole execution is paused.

Server p»Sense—p-Think—pAct

Soccer Agent

Figure 4 Single-threaded model

At the higher level, the agent is responsible for performing three individual tasks.
First it needs to receive sensory information from the server via a UDP socket. Then
the agent has to “think” in order to produce a desired action. Finally this action
should be sent back to the server via the UDP socket. To perform all these tasks
using a single thread the agent has to use a serial-processing loop shown in figure 4.

Given the nature of the simulation and the fact that two out of three operations
involve I/0 on a UDP socket, it is clear that a single-threaded serial implementation
puts a significant limitation to the agent’s capabilities. I/O operations can be
extremely slow. Although an agent receives visual information every 150ms, it can
send actions every 100ms. If an agent is put to sleep until new data arrives, it will
miss a number of cycles, which significantly decreases the agent’s overall
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performance. Therefore, both I/O multiplexing and signal-driven I/O are widely used
in single threaded implementations.

Using I/O Multiplexing

I/O multiplexing is the capability to tell the kernel to notify the process if one or more
I/0 conditions are ready (i.e. input is ready to be read, or the descriptor can take more
output). For the RoboCup simulator, the agent needs to check if data is available
from the server, or if it is ready to send data to the server. To implement multiplexing,
after the connection has been established with the server, the agent enters an infinite
loop that is normally called the main-loop (or message-loop). In this main loop the
select call is used to determine whether data are ready to be received or to be sent. If
new data has arrived from the server, the agent analyses and stores the information.
Alternatively if data are ready to be sent, the agent sends the required action to the
server.

while (agent is alive)

{

Call select to check which descriptor is ready.

if (read descriptor is ready)
receive and analyse data from the server.

if (write descriptor is ready)
send an action to the server.

Figure 5 Pseudo-code for I/O multiplexing

This approach has several disadvantages. Firstly it is difficult to accurately
time each phase of the agent’s cycle. The agent can only have an estimate of the time
required to analyse the sensory data, perform all the thinking, and produce an action.
Hence, timing correctness cannot be guaranteed for the 100ms-interval set by the
server. Secondly only one I/O operation will be executed at a time. In other words,
although select can wait on multiple descriptors, the main-loop can only perform one
operation when select returns. Hence every time the agent enters the main-loop it will
either analyse the sensory data that were received, or send an action to the server.
Since only one of the two tasks can be executed, and since this task will not be
interrupted before completion, the agent cannot guarantee timing correctness. Finally,
the select function requires two system calls to receive the data. Initially select has to
be executed to check whether data is available, and then if data exists on the socket
the agent needs to call rcvfrom in order to receive that data. Figure 5 presents an
example of a pseudo-code implementation using I/O multiplexing.

Using Signal Driven I/O

Signal driven I/O mode is used to instruct the kernel to notify the agent by generating
a signal when something happens on a descriptor. To implement signal driven 1/O
two signals are normally used. One is generated when new data arrives from the
server through the UDP socket (SIGIO), the other is generated when an interval timer
expires which indicates that an action must be sent.
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Signal handler for SIGIO Agent’s Main-Loop
{ {
/I SIGALRM has just been blocked . Install SIGIO & SIGALRM handlers
Set an interval timer to 100ms
Receive and analyse data from the server. Start thinking process...
/I On exit, SIGALRM will be unblocked . /* The kernel will generate signals for
} the process and hence execute a signal
handler if either of these two events occurs
Signal handler for SIGALRM if (100ms expire)
{ execute SIGALRM handler.
/I SIGIO has just been blocked. If (new data arrives on the socket)
execute SIGIO handler.
(Since 100ms have expired...) After the execution of the handlers has
Send an action to the server. finished, the program will return
precisely where it was before the
I/l On exit, SIGIO will be unblocked . signal was generated. */
} }

Figure 6 Pseudo code for signal driven I/O

Signal driven I/O can only handle one signal at a time. Although it is possible to
establish signal handlers for multiple signals (e.g. SIGIO, SIGALRM, etc.) only one
signal handler can be executed at any given point. Therefore, when a signal is
generated while another signal handler is being executed, certain precautions have to
be taken to avoid signal loss. To resolve this problem it is necessary to mask
additional signals before entering the signal handler and then unmask them when the
handler has finished.

However, great care needs to be taken for masking (SIGIO) signals. When a signal
handler is being executed, if two more datagrams arrive on the UDP socket, the
(SIGIO) signal will be generated two more times. But since the signal is blocked,
when the signal handler returns, the system will only observe one (SIGIO) signal.
This will force the agent to read the second datagram but the third one will remain on
the queue until another (SIGIO) is generated. This clearly causes a problem since this
architecture is unable to guarantee that the number of (SIGIO) generations matches
the datagrams on the UDP queue. A solution would be to keep polling the queue until
it is empty but this clearly consumes valuable time that could be used to perform other
computations. An example of a pseudo-code implementation for signal driven I/O is
given in figure 6.

3.2 A multi-threaded approach

Instead of a single-thread, a process can have multiple threads, sharing the same
address space and performing different operations independently and without
affecting each other. This architecture allows the agent to use a separate thread for
each of the three tasks. The proposed multi-threaded model can be seen in figure 7.
Inside the agent, the three main tasks are running concurrently (or in parallel in
multi-processor hardware) minimizing delays from the I/O operations. Only the
“Sense” thread is responsible for waiting data from the server, and only the “Act”
thread is responsible for timing and sending the actions (these relationships are
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Figure 7 Multi-threaded model
indicated by the dashed arrows). In this way the agent can dedicate the maximum
amount of processing power available by the processor(s) to the “Think” thread.

Firstly it is necessary to specify the I/O model that is going to be used. This now
becomes much simpler since there are separate execution threads for input and output.
The “Sense” thread can now use a blocking I/O connection. Since this thread is now
dedicated to receiving data, it does not need to waste processing time querying the
socket as to whether data is available. With a blocking connection the rcvfrom call
will put the “Sense” thread to sleep until new data arrives on the socket. Putting the
“Sense” thread to sleep does not affect the execution of the other two threads that can
proceed as normal. When data arrives on the socket, the “Sense” thread will be
awaken, execute a rcvfrom call to receive the next available datagram from the server,
and analyse the new data. This approach does not allow for datagrams to be lost, or
queue up. This would only happen if the server transferred data faster than the thread
could analyse it, which is impossible.

Secondly, the “Act” thread needs to send any available actions to the server at
100ms intervals. By having a dedicated thread to perform this task, the accuracy of
the timing is only limited by the resolution of the operating system’s clock. The
gettimeofday function and a conditional variable are used to implement the “Act”
thread. In other words, the current absolute time is incremented by 100ms and then
the thread waits for the conditional variable to return. Assuming spurious wake-ups
will not occur, and since no other thread will signal this conditional variable, it will
only return when the 100ms have passed, in which case the “Act” thread can send an
action to the server. This method provides highly accurate timing comparing to the
single-threaded approaches described earlier. This enables the agent to guarantee
certain levels of timing correctness, which is something single-threaded approaches
failed to do. In addition to that, this thread is also put to sleep while waiting for the
conditional variable to return. This provides the other threads with the maximum
amount of resources available.

Thirdly the “Think” thread is the only one that stays permanently awake, and
consumes the majority of the available resources to perform most of the
computations. Part of the “Think” thread of the current implementation can be found
in [8]. If required, various scheduling policies and different priorities among the
threads could be implemented. However, given the nature of the problem, no
scheduling is needed. In addition to that, synchronization between separate threads
can also be implemented if required. Multi-threaded programming is a large topic
itself. Describing issues such as how threads compete for resources, or how often
pre-emption occurs falls outside the scope of this paper. A detailed description on
multi-threaded programming can be found in [2]. A pseudo-code implementation of
the proposed multi-threaded approach is shown in Figure 8. An alternative multi-
threaded approach based on an organic programming language can be found in [11].
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Table 1 Performance testing

Cycle loss I/%ingle-?hrea_d .Single-t.hread Multi-thread
multiplexing [signal driven I/O | approach
1 agent 1651 (27.52%) | 24 (0.4%) 0(0%)
6 agents 1653 (27.55%) | 1020 (17%) 0(0%)
11 agents 1656 (27.60%) | 3294 (54.9%) 4 (0.07%)

4. Results and Analysis

4.1 Experimental Results

To compare the two models a simple experiment was carried out using a PC with an
Intel Pentium IT 450MHz processor, running Redhat Linux 5.2. The purpose of this
experiment was to evaluate only the timing correctness of the models described
above, since logical correctness is based on the individual Al implementations. The
test required an agent to connect to the server and send a turn command in each cycle.
In addition to that the agent is required to receive and analyse all sensory information
to simulate a real game situation. The sensory analysis functions are identical for all
implementations. Initially, a single agent was tested on the field. The same
experiment was then carried out using 6 and 11 agents to examine what would happen
as computational resources decrease. The results for a 6000 cycle test (a game
duration) are illustrated in table 1.

The table entries indicate the number of cycles for which an agent failed to send
an action and hence did not meet the timing requirements. Adding more agents has a
similar effect as extending the thinking process. In both cases system resources are

Sensorthread Actuatorsthread Main-Loop
{
while(agent is alive) while(agent is alive) CreateSensorthread
{ { CreateActuatorsthread
receive& analysedata from server waitfor 100ms Startthinking process...
/*if data is not available the
will be put to sleep. When /* Again this thread is /* Although two threads are
arrives on the socket, the to sleep until 100ms the main execution is a thread
will wake up, receive andnalyse passed. */ Hence there is no need to
that data. */ executean action Agent's| another thread for the
} } process, the current one can used*/
} } }

Figure 8 Pseudo code for the proposed multi-threaded approach

depleted by adding more computations. This is to test the scalability of each
implementation in terms of number of operations per cycle. As can be seen, I/O
multiplexing using select has over 27% cycle loss even when only 1 agent is used.
However multiplexing is highly scalable since this percentage does not increase much
more for 6 or even 11 agents. On the other hand signal driven I/O performs
significantly better in the single agent trial with only 0.4% cycle loss. However this
approach is not scalable since there is 17% loss for six agents and nearly 55% cycle
loss for 11 agents.
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From the results generated by the multi-threaded approach, it can be seen that there
is nearly 0% cycle loss for all trials. This proves the superiority of multi-threaded
approaches in terms of performance and scalability. It should be noticed that multi-
threaded implementations are very efficient in multi-processor hardware. The use of
parallel processing is significantly important in obtaining real-time performances even
in highly complicated systems such as aerospace control systems [15] and advanced
AGVs in industry [5].

4.2 Discussion and Analysis

Although comparing the multi-threaded approach against the single-threaded ones is
not an easy task, certain points about the two approaches are briefly presented here.
The main advantages of the proposed multi-threaded approach include:

o The multi-threaded model allows more efficient exploitation of the agent’s natural
concurrency. Various computations can be performed while waiting for slow I/O
operations to complete. This provides the agent with a significant advantage
considering the number of I/O operations per game.

e Using multiple-threads provides a modular programming model that clearly
expresses relationships between independent events within the agent. However,
designing a multi-threaded approach clearly illustrates various program
dependencies and synchronization requirements between different modules within
the agents. Mixing CPU-intensive processes with I/O intensive processes results in
better utilization of resources of an uni-processor system. Note that multi-threaded
implementations allow an agent to achieve even better performance in a multi-
processor environment.

e A multi-threaded approach is highly scalable. In the current implementation,
consecutive actions can be sent 100ms apart. A multi-threaded implementation
could have one thread performing an expensive search algorithm, and a separate
thread executing simple reactive behaviours. By combining the results from both
threads, the agent can significantly improve its performance.

However, multi-threaded programming has also a few limitations. First, a multi-
threaded model is normally more complicated than a single threaded one. Careful
design is required to keep track of synchronization protocols and program invariants.
Second, it is necessary to avoid deadlocks, races, and priority inversions. Third, the
POSIX standard does not provide an interface for object oriented languages. However
a solution does exist and can be found in [14].

5. Conclusions

It has been shown in this paper that the behaviour of real-time agents is not founded
only on the logical correctness of their actions. Timing correctness becomes an
equally important factor especially in applications where response times can
significantly affect the result. In such cases the quality of the results becomes a
function of both logically correct output and response time. To satisfy all the
necessary timing constraints for a real-time agent, a single-threaded implementation
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will not suffice. This is mainly due to the low speed of network I/O operations, and
the limiting serial nature of such architectures. Therefore, a multi-threaded
implementation is proposed in order to overcome this problem. Based on this
approach, the agents can perform various computations concurrently (or even in
parallel on multi-processor hardware) and hence avoid waiting for the slow I/O
operations to complete. This allows the agents to guarantee a certain degree of timing
correctness that is only limited by the resolution of the given operating system. In
addition, the experimental results have shown that a multi-threaded model clearly
outperforms a single-threaded one in terms of responsiveness and efficiency.
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