Abstract
This paper proposes a technique for indexing, clustering and retrieving images based on their edge features. In this technique, images are decomposed into several frequency bands using the Haar wavelet transform. From the one-level decomposition sub-bands an edge image is formed. Next, the higher order auto-correlation function is applied on the edge image to extract the edge features. These higher order autocorrelation features are normalized to generate a compact feature vector, which is invariant to shift, image size and gray level. Then, these feature vectors are clustered by a self-organizing map (SOM) based on their edge feature similarity. The performed experiments show the high precision of this technique in clustering and retrieving images in a large image database environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D, Lee, D. Perkovic, D. Steele, P. Yanker. Query by Image and Video Content: The QBIC System. IEEE Computer Magazine, Sept. 1995.
J. R. Smith, S. F. Chang. VisualSEEK: A Fully Automated Content-Based Image Query System. ACM Multimedia Conference, Boston, pp.87–98, Nov. 1996.
E. Albuz. E. Kocalar, A. A. Khokhar. Scalable Image Indexing and Retrieval Using Wavelets. ICASSAP 1999.
M. Kobayakawa, M. Hoshi, T. Ohmori, T. Terui. Interactive Image Retrieval Based on Wavelet Transform and Its Application to Japanese Historical Image Data. IPSJ Trans. on, Vol.40, No.3, pp.899–911, March 1999. (In Japanese)
J. Z. Wang, G. Wiederhold, O. Firschein, S. X. Wei. Content-based Image Indexing and Searching Using Daubechies’ Wavelets. Springer-Verlag Int’l Journal on Digital Libraries. Vol.1, pp.311–328, 1997.
A. Natsev, R. Rastogi, K. Shim. WALRUS: A Similarity Retrieval Algorithm for Image Databases. SIGMOD record, vol.28, no.2, pp.395–406, Philadelphia, PA, 1999.
T. Kohonen. Self-Organizing Maps. Springer-Verlag, 1997. 2nd extended edition.
C. E. Jacobs, A. Finkelstein, D. H. Salesin. Fast Multiresolution Image Querying. Proc. of ACM SIGGRAPH, New York, 1995.
E. Oja, J. Laaksonen, M. Koskela, S. Brandt. Self-Organizing Maps for Content-Based Image Database Retrieval. Published by Elsevier Science B. V., in Kohonen Maps, pp.349–362. 1997.
T. Kurita, N. Otsu, T. Sato. A Face Recognition Method Using Higher Order Local Autocorrelation And Multivariate Analysis. Prod. of 11th Int’l Conf. on Pattern Reconition, pp.213–216, The Hague, 1992.
M. Kreutz, B. Volpel, H. Janssen. Scale-Invariant Image Recognition Based on Higher Order Autocorrelation Features. Pattern Recognition, Vol.29, No.1, pp.19–26, 1996.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kubo, M., Aghbari, Z., Oh, K.S., Makinouchi, A. (2001). A Wavelet-Based Image Indexing, Clustering, and Retrieval Technique Based on Edge Feature. In: Tang, Y.Y., Yuen, P.C., Li, Ch., Wickerhauser, V. (eds) Wavelet Analysis and Its Applications. WAA 2001. Lecture Notes in Computer Science, vol 2251. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45333-4_22
Download citation
DOI: https://doi.org/10.1007/3-540-45333-4_22
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43034-6
Online ISBN: 978-3-540-45333-8
eBook Packages: Springer Book Archive