Abstract
An ANT is a mobile agent that is capable of solving various kinds of routing and congestion problems in computer networking by continuously modifying routing tables in respond to congestion. In a distributed problem solving paradigm, a society of ANTS (each contributing some information) collaborate to solve a larger problem. In recent years, Ant-based algorithms were used to solve classical routing problems such as: Travelling Salesman Problem, Vehicle Routing Problem, Quadratic Assignment Problem, connection-oriented/connectionless routing, sequential ordering, graph coloring and shortest common supcrscqucncc. By introducing the general idea of Ant-based algorithms with a focus on Ant Colony Optimization (ACO) and their mathematical models, this paper brings together a collection of ACO algorithms discussed their features, strength and weaknesses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Reference
B. Bullnheimer, R. F. Hartl and C. Strauss, An improved ant system algorithm for the vehicle routing problem, Annals of Operations Research, 89, 1999
B. Bullnheimer, R.R Hartl, and C. Strauss, A new rank-based version of the ant system: a computational study, Technical Report POM-03/97, Institute of Management Science, University of Vienna, 1997.
Di Caro, G. & Dorigo, M., Mobile Agents for Adaptive Routing, Proceeding 31st Hawaii International Conference Systems Scicneces (HICSS-31), Kohala Coast, Hawaii, p. 74–83, Jan 1998.
Di Caro, G., & Dorigo, M, Two ant colony algorithms for best-effort routing in datagram networks, Proceedings of the Tenth IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS’98), p. 541–546.
Di Caro, M. Dorigo, AntNet: Distributed Stigmergetic Control for Communications, Journal of Artificial Intelligence Research 9, p. 317–365, 1998
E. Bonabeau, F. Henaux, S. Guerin, D. Snyers, P. Kuntz, G. Theraulaz, Routing in telecommunications networks with’ smart’ ant-like agents, Intelligent Agents for Telecommunications Applications’ 98.
E. D. Weinberger, Correlated and uncorrelated fitness landscapes and how to tell the difference, Biological Cybernetics, 63, p. 325–336, 1990
F. Kruger, D. Merkle and M. Midendorf, Studies on a parallel ant system for the BSP model, BSP model, Unpublished manuscript.
H. M. Botee and Eric Bonabeau, Evolving Ant Colony Optimization, Advance Complex Systems, 1, p.149–159, 1998
T. A. Wagner, M. Lindenbaum, A. M. Bruckstein, Efficient Graph Search by a Smell-Oriented Vertex Process, Annuals of Mathematics and Artificial Intelligence, 24, p. 211–223, 1998
I. A. Wagner, M. Lindenbaum, A. M. Bruckstein, Smell as a Computational Resource-A Lesson We Can Learn from the Ant, Proceeding ISTCS’96, p. 219–230, http://www.cs.technion.ac.il/~wagner
I. A. Wagner, M. Lindenbaum, A. M. Brucksten, Cooperative Covering by Ant-Robots using Evaporating Traces, Technical report CIS-9610, Center for Intelligent Systems, Technion, Haifa, April 1996
I. A. Wagner, M. Linderbaum, A. M. Bruckstein, ANTS: Agents, Networks, Trees, and Subgraphs, IBM Haifa Research Lab, Future Generation Computer Systems Journal, North Holland (Editors: Dorigo, Di Caro and Stutzel), vol.16,no 8, p. 915–926, June 2000
J. L, Deneubourg, S. Aron, S. Goss and J.-M. Pasteels, The self-organizing exploratory pattern of the argentine ant, Journal of Insert Behavior, 3: 159–168, 1990
L. M. Gambardella and M. Dorigo. HAS-SOP, An hybrid ant system for the sequential ordering problem, Technical Report 11-97, IDSIA, Lugano, CH, 1997.
M. A. Gibney & N. R. Jennings, Market Based Multi-Agent Systems for ATM Network Management, Proceedings 4th Communication Networks Symposium, Manchester, UK. 1997.
M. Bolondi and M. Bondanza, Parallelizzazione di un algoritmo per la risoluzione del problema del commesso viaggiatore. Master’s thesis, Dipartimento di Elettronica e Tnformazione, Politecnico di Milano, Ttaly, 1993.
M. Dorigo, G. D. Caro, L. M. Gambardella, Ant Algorithms for Discrete Optimization, Artificial Life, 5,2, p. 137–172, 1999
M. Dorigo, G. Di Caro, The Ant Colony Optimization MetaHeuristic, in Corne D., Dorigo M. and Glover F., New Ideas in Optimization, McGraw-Hill, May, 1999. ISBN: 0077095065
M. Dorigo, L. M. Gambardella, Ant Colonies for the Traveling Salesman Problem, BioSystems, 43:73–81, 1997
M. Dorigo, L. M. Gambardella, Ant colony system: A cooperative learning approach to the travelling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1997) p.53-66
M. Dorigo, Optimization, Learning and Natural Algorithms (in Italian), PhD thesis, Dipartimento di Elettronica e Informazione, Politecnico di Milano, IT, 1992
M. Dorigo, V Maniezzo, and A. Colorni, Positive feedback as a search strategy, Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, IT, 1991
M. Dorigo, V. Maniezzo & A. Colorni, The Ant System: A Autocatalytic Optimizing Process, Technical Report No. 91-061 Revised, Politecnico di Milano Italy, 1991
M. Dorigo, V. Maniezzo & A. Colorni, The Ant System: Optimization by a Colony of Cooperating Agents, IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26 (I):29–41, 1996
M. R. Garey and D. S. Johnson, Computers and Intractability, W.H. Freeman and Company, 1979
P. F. Stadler, Towards a theory of landscapes, Technical Report SFI-95-03-030, Santa Fe Institute, USA, 1995
P.P. Grasse, La reconstruction du nid et les coordinations interindividuelles chez bellicositermes natalensis et cubitermes sp. La theorie de la stigmergie: essai d’interpretation du comportement des termites constructeurs, Insectes Sociaux 6, p. 41–81, 1959
R. Schoonderwoerd, O. Holland, J. Bruten and L. Rothkrantz, Ant-based load balancing in Telecommunications Networks, Adaptive Behavior, vol.5,no.2, 1996.
Ruud Schoonderwoerd, Owen Holland, Janet Bruten, and Leon Rothkrantz, Ants for Load Balancing in Telecommunication Networks, Technical Report HPL-96-35, HewlettPackard Laboratories Bristol, 1996.
S. Appleby, S. Steward, Mobile software agents for control in telecommunications Networks, in BT Technology Journal Vol. 12,No.2, 1994
Schoonderwoerd, R., Holland, O., Bruten, J. Ant-like agents for load balancing in telecommunications networks, Proceedings of the First International Conference on Autonomous Agents, p. 209–216, ACM Press.
Thomas Stuzle and Holger H. Hoos, MAX-MINAnt System, Future Generation Computer Systems Journal, 16(8):889–914, 2000
V. Maniezzo, A. Carbonaro, Ant Colony Optimization: An Overview, III Metaheuristic International Conference, Angra dos Reis, Brazil
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sim, K.M., Sun, W.H. (2001). A COMPARATIVE STUDY OF ANT-BASED OPTIMIZATION FOR DYNAMIC ROUTING. In: Liu, J., Yuen, P.C., Li, Ch., Ng, J., Ishida, T. (eds) Active Media Technology. AMT 2001. Lecture Notes in Computer Science, vol 2252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45336-9_19
Download citation
DOI: https://doi.org/10.1007/3-540-45336-9_19
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43035-3
Online ISBN: 978-3-540-45336-9
eBook Packages: Springer Book Archive