Skip to main content

A COMPARATIVE STUDY OF ANT-BASED OPTIMIZATION FOR DYNAMIC ROUTING

  • Conference paper
  • First Online:
Active Media Technology (AMT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2252))

Included in the following conference series:

  • 702 Accesses

Abstract

An ANT is a mobile agent that is capable of solving various kinds of routing and congestion problems in computer networking by continuously modifying routing tables in respond to congestion. In a distributed problem solving paradigm, a society of ANTS (each contributing some information) collaborate to solve a larger problem. In recent years, Ant-based algorithms were used to solve classical routing problems such as: Travelling Salesman Problem, Vehicle Routing Problem, Quadratic Assignment Problem, connection-oriented/connectionless routing, sequential ordering, graph coloring and shortest common supcrscqucncc. By introducing the general idea of Ant-based algorithms with a focus on Ant Colony Optimization (ACO) and their mathematical models, this paper brings together a collection of ACO algorithms discussed their features, strength and weaknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Reference

  1. B. Bullnheimer, R. F. Hartl and C. Strauss, An improved ant system algorithm for the vehicle routing problem, Annals of Operations Research, 89, 1999

    Google Scholar 

  2. B. Bullnheimer, R.R Hartl, and C. Strauss, A new rank-based version of the ant system: a computational study, Technical Report POM-03/97, Institute of Management Science, University of Vienna, 1997.

    Google Scholar 

  3. Di Caro, G. & Dorigo, M., Mobile Agents for Adaptive Routing, Proceeding 31st Hawaii International Conference Systems Scicneces (HICSS-31), Kohala Coast, Hawaii, p. 74–83, Jan 1998.

    Google Scholar 

  4. Di Caro, G., & Dorigo, M, Two ant colony algorithms for best-effort routing in datagram networks, Proceedings of the Tenth IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS’98), p. 541–546.

    Google Scholar 

  5. Di Caro, M. Dorigo, AntNet: Distributed Stigmergetic Control for Communications, Journal of Artificial Intelligence Research 9, p. 317–365, 1998

    MATH  Google Scholar 

  6. E. Bonabeau, F. Henaux, S. Guerin, D. Snyers, P. Kuntz, G. Theraulaz, Routing in telecommunications networks with’ smart’ ant-like agents, Intelligent Agents for Telecommunications Applications’ 98.

    Google Scholar 

  7. E. D. Weinberger, Correlated and uncorrelated fitness landscapes and how to tell the difference, Biological Cybernetics, 63, p. 325–336, 1990

    Article  MATH  Google Scholar 

  8. F. Kruger, D. Merkle and M. Midendorf, Studies on a parallel ant system for the BSP model, BSP model, Unpublished manuscript.

    Google Scholar 

  9. H. M. Botee and Eric Bonabeau, Evolving Ant Colony Optimization, Advance Complex Systems, 1, p.149–159, 1998

    Article  Google Scholar 

  10. T. A. Wagner, M. Lindenbaum, A. M. Bruckstein, Efficient Graph Search by a Smell-Oriented Vertex Process, Annuals of Mathematics and Artificial Intelligence, 24, p. 211–223, 1998

    Article  MATH  MathSciNet  Google Scholar 

  11. I. A. Wagner, M. Lindenbaum, A. M. Bruckstein, Smell as a Computational Resource-A Lesson We Can Learn from the Ant, Proceeding ISTCS’96, p. 219–230, http://www.cs.technion.ac.il/~wagner

  12. I. A. Wagner, M. Lindenbaum, A. M. Brucksten, Cooperative Covering by Ant-Robots using Evaporating Traces, Technical report CIS-9610, Center for Intelligent Systems, Technion, Haifa, April 1996

    Google Scholar 

  13. I. A. Wagner, M. Linderbaum, A. M. Bruckstein, ANTS: Agents, Networks, Trees, and Subgraphs, IBM Haifa Research Lab, Future Generation Computer Systems Journal, North Holland (Editors: Dorigo, Di Caro and Stutzel), vol.16,no 8, p. 915–926, June 2000

    Google Scholar 

  14. J. L, Deneubourg, S. Aron, S. Goss and J.-M. Pasteels, The self-organizing exploratory pattern of the argentine ant, Journal of Insert Behavior, 3: 159–168, 1990

    Article  Google Scholar 

  15. L. M. Gambardella and M. Dorigo. HAS-SOP, An hybrid ant system for the sequential ordering problem, Technical Report 11-97, IDSIA, Lugano, CH, 1997.

    Google Scholar 

  16. M. A. Gibney & N. R. Jennings, Market Based Multi-Agent Systems for ATM Network Management, Proceedings 4th Communication Networks Symposium, Manchester, UK. 1997.

    Google Scholar 

  17. M. Bolondi and M. Bondanza, Parallelizzazione di un algoritmo per la risoluzione del problema del commesso viaggiatore. Master’s thesis, Dipartimento di Elettronica e Tnformazione, Politecnico di Milano, Ttaly, 1993.

    Google Scholar 

  18. M. Dorigo, G. D. Caro, L. M. Gambardella, Ant Algorithms for Discrete Optimization, Artificial Life, 5,2, p. 137–172, 1999

    Article  Google Scholar 

  19. M. Dorigo, G. Di Caro, The Ant Colony Optimization MetaHeuristic, in Corne D., Dorigo M. and Glover F., New Ideas in Optimization, McGraw-Hill, May, 1999. ISBN: 0077095065

    Google Scholar 

  20. M. Dorigo, L. M. Gambardella, Ant Colonies for the Traveling Salesman Problem, BioSystems, 43:73–81, 1997

    Article  Google Scholar 

  21. M. Dorigo, L. M. Gambardella, Ant colony system: A cooperative learning approach to the travelling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1997) p.53-66

    Google Scholar 

  22. M. Dorigo, Optimization, Learning and Natural Algorithms (in Italian), PhD thesis, Dipartimento di Elettronica e Informazione, Politecnico di Milano, IT, 1992

    Google Scholar 

  23. M. Dorigo, V Maniezzo, and A. Colorni, Positive feedback as a search strategy, Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, IT, 1991

    Google Scholar 

  24. M. Dorigo, V. Maniezzo & A. Colorni, The Ant System: A Autocatalytic Optimizing Process, Technical Report No. 91-061 Revised, Politecnico di Milano Italy, 1991

    Google Scholar 

  25. M. Dorigo, V. Maniezzo & A. Colorni, The Ant System: Optimization by a Colony of Cooperating Agents, IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26 (I):29–41, 1996

    Article  Google Scholar 

  26. M. R. Garey and D. S. Johnson, Computers and Intractability, W.H. Freeman and Company, 1979

    Google Scholar 

  27. P. F. Stadler, Towards a theory of landscapes, Technical Report SFI-95-03-030, Santa Fe Institute, USA, 1995

    Google Scholar 

  28. P.P. Grasse, La reconstruction du nid et les coordinations interindividuelles chez bellicositermes natalensis et cubitermes sp. La theorie de la stigmergie: essai d’interpretation du comportement des termites constructeurs, Insectes Sociaux 6, p. 41–81, 1959

    Google Scholar 

  29. R. Schoonderwoerd, O. Holland, J. Bruten and L. Rothkrantz, Ant-based load balancing in Telecommunications Networks, Adaptive Behavior, vol.5,no.2, 1996.

    Google Scholar 

  30. Ruud Schoonderwoerd, Owen Holland, Janet Bruten, and Leon Rothkrantz, Ants for Load Balancing in Telecommunication Networks, Technical Report HPL-96-35, HewlettPackard Laboratories Bristol, 1996.

    Google Scholar 

  31. S. Appleby, S. Steward, Mobile software agents for control in telecommunications Networks, in BT Technology Journal Vol. 12,No.2, 1994

    Google Scholar 

  32. Schoonderwoerd, R., Holland, O., Bruten, J. Ant-like agents for load balancing in telecommunications networks, Proceedings of the First International Conference on Autonomous Agents, p. 209–216, ACM Press.

    Google Scholar 

  33. Thomas Stuzle and Holger H. Hoos, MAX-MINAnt System, Future Generation Computer Systems Journal, 16(8):889–914, 2000

    Article  Google Scholar 

  34. V. Maniezzo, A. Carbonaro, Ant Colony Optimization: An Overview, III Metaheuristic International Conference, Angra dos Reis, Brazil

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sim, K.M., Sun, W.H. (2001). A COMPARATIVE STUDY OF ANT-BASED OPTIMIZATION FOR DYNAMIC ROUTING. In: Liu, J., Yuen, P.C., Li, Ch., Ng, J., Ishida, T. (eds) Active Media Technology. AMT 2001. Lecture Notes in Computer Science, vol 2252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45336-9_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-45336-9_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43035-3

  • Online ISBN: 978-3-540-45336-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics