
K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.): CAiSE 2001, LNCS 2068, pp. 171–186, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Developing E-Services for Composing E-Services

Fabio Casati, Mehmet Sayal, and Ming-Chien Shan

Hewlett-Packard Laboratories
1501 Page Mill Road, 1U-4
Palo Alto, CA, 94304 USA

{casati,sayal,shan}@hpl.hp.com

Abstract. The Internet is rapidly becoming the preferred mean through which
companies provide services to businesses and customers. A large number of e-
services, including for instance stock trading, customized newspapers, real-time
traffic report, or itinerary planning, is already available on the Web, and the
type and number of e-services grows on a daily basis. In order to support the
development and deployment of e-services, software vendors are developing e-
services frameworks and platforms, that provide a language for describing an e-
service, and then allow service providers to register, advertise and securely
deliver e-services to (authorized) users. A composite e-service is an e-service
defined by composing other basic or composite e-services. As the e-service
paradigm becomes popular and more and more applications are developed or
deployed as e-services, the need and opportunity for defining composite service
become manifest. This paper presents a specific type of e-service (or, rather, a
meta e-service) called Composition E-Service (CES), that allows the definition,
execution, management, and monitoring of composite e-services. We first
describe the advantages and the functionality of such a service. Next, we
present the language used for specifying the composition, also discussing why
existing workflow languages are not suitable for this purpose. Finally, we
present the architecture and implementation of the CES we developed to deliver
the service on top of the e-services platform e-speak. An analogous architecture
and implementation strategy can be followed with any other e-services
platform.

1 Introduction

Today, the Internet is not only being used to provide information and perform e-
commerce transactions, but also as the platform through which services are delivered
to businesses and customers. The explosion of the number and type of services as well
as service providers requires mechanisms and frameworks that support providers in
developing and delivering e-services and support consumers in finding and accessing
them. Several software vendors and consortia are providing models, languages, and
interfaces for describing e-services and making them available to users. Such
frameworks usually allow the specification of business functions or applications in
terms of their properties, which can be generic (such as the service name and location)
or service-specific (such as the car size for a car rental service). Depending on the
framework, the properties are represented by Java vectors or XML documents.

172 Fabio Casati, Mehmet Sayal, and Ming-Chien Shan

In addition, vendors also provide software platforms (called E-Services Platform,
or simply ESP in the following) that allow service providers to register and advertise
their services and allow authorized users to lookup and access registered services (see
Fig. 1). Examples of such platforms are BEA eCollaborate, WebMethods Enterprise,
Sun Jini, Microsoft .net, and HP e-speak.

ES ES ES

ES

ES

Client

ES

ES

E-Services
Platform

ES ES

Service
Provider

E-Services
Platform

Fig. 1. E-Services platforms allow providers to register e-services and users to lookup and
invoke them. Ovals labeled ES represent registered e-services.

These approaches enable the uniform representation, search, and access of business
applications, both those used for internal operations (such as ERP operations,
DBMSs, CRM, SCM, etc) and the ones that are made available to customers,
typically via the Web.

The uniform representation and implementation of applications according to a
homogeneous e-service framework creates the opportunity for composing individual,
web-accessible e-services (possibly offered by different companies) into pre-
packaged, value added, composite e-services. For instance, a provider could offer a
travel reservation service by composing hotel and flight reservation services, or it
could offer an itinerary planning service by composing road map services, weather
services, traffic prediction services, and “utility” services to collect data from the user
via the Web or send e-mail notifications.

Although composite services could be developed by hard-coding the business logic
using some programming language, service providers would greatly benefit from a
service composition tool that could ease the task of composing e-services, managing
and monitoring them, and making them available to authorized users. This issue is
similar to that of workflow applications, where the alternative is hard-coding the flow
logic or using a Workflow Management System (WfMS). The advantages of service
composition and workflow management tools versus hard-coding (for many practical
applications) have been discussed elsewhere in the literature and will not be presented
here (the interested reader is referred to [2, 4, 8]).

The traditional approach to providing a composition facility, advocated by
workflow and Enterprise Application Integration (EAI) vendors, consists in offering a
development environment targeted to the enterprise IT personnel. We decided to
follow a different approach, that consists in providing composition functionality as an

Developing E-Services for Composing E-Services 173

e-service itself (or, rather, a meta-service, since it is a service for developing
services). By making it an e-service, the service composition facility can be
advertised, discovered, delivered, managed, and protected by end-to-end security
analogously to any other e-service, thereby exploiting all the advantages and features
provided by the ESP. In addition, the ability of defining and deploying composite
services is not limited to the ESP’s owner, but can be offered to other businesses and
customers, thereby relieving them from the need of maintaining a composition system
that may be onerous to buy, install, and operate. In the following we will refer to this
meta-service e-service as composition e-service, or simply CES.

In this paper we present the design, architecture, and implementation of the CES.
We first introduce the notion of composition as an e-service and provide an overview
of the functionality and behavior of such a service. Then, we discuss the
characteristics of composite services, and analyze similarities and differences with
respect to workflow processes. This discussion will introduce and motivate our
choices in the definition of the service composition model. Next, we present the
architecture and implementation of the composition e-service we have developed on
top of the e-services platform e-speak. An analogous architecture and implementation
strategy can be followed with any other e-services platform, and therefore provides a
viable solution for software vendors and solution providers that need to develop a
composition facility.

2 Service Composition as an E-Service

This section first briefly describes ESPs (in order to make this paper self-contained),
and then introduces the basic functionality of a CES.

2.1 Basic ESP Functionality

ESPs typically allow service providers to register services, and allow authorized users
to lookup and invoke registered services. In order to make services searchable and
accessible to customers, service providers must register the service definition with the
ESP, and possibly with advertising services. As part of the registration process, the
service provider gives information about the service, such as the service name, the
methods (operations) that can be performed on the service along with their
input/output parameters, or the list of authorized users. Note that, in most service
models, a service may provide several methods (operations) to be invoked as part of
its interface. For instance, an e-music service may allow users to browse or search the
catalog, to listen to songs, or to buy discs or mp3 files.

In addition, the service provider specifies who is the handler of the service, i.e., the
application that must be contacted in order to request service executions. Depending
on the service model and the ESP, the service handler can be identified by providing a
URI (such as in e-speak) or by giving a proxy java object that will take care of
contacting the handler (such as in Jini). Customers may look for available services by
issuing service selection queries, that may simply search services by name, or can
include complex constraints on the service properties as well as ranking criteria in

174 Fabio Casati, Mehmet Sayal, and Ming-Chien Shan

case multiple services satisfy the search criteria. Service selection queries return a
reference to one or more services that can be used to invoke them.

2.2 CES Functionality

This section describes the behavior of the composition e-service. A CES sits on top of
an e-services platform and allows users to:

− Register and advertise definitions of composite services with the ESP and make
them available to authorized users just like any other e-service. Composite
services are defined in a Composite Service Description Language (CSDL),
whose features will be presented later in the paper.

− Invoke (start executions of) composite services. The CES will execute the service
on behalf of the user by appropriately invoking the component services as
defined by the CSDL specifications.

− Monitor and manage composite services. The CES allows the modification or
deletion of composite service definitions as well as running instances. Customers
and service providers can monitor/track the execution of on-going instances as
well as completed composite service executions.

In order to register a composite service, the service provider must give the same
information needed to register a basic service (except for the handler - see below) to
the CES, so that the composite service can be registered and made available to
authorized users. In addition, the service provider gives the CSDL specifications to
define how services should be composed1.

Fig. 2 shows the composite service registration process for a composite service
called FoodOnWheels (described in the following section): a provider that wants to
define a new composite service invokes the register method of the CES by sending
the service description (service information plus CSDL) as parameter. The CES then
registers the composite service with the ESP in order to make it available as an e-
service to the other (authorized) customers. The registration with the e-service
platform is analogous to any other service registrations, and therefore the CES must
provide all the required information describing the e-service and restricting access to
it. In particular, it should also specify who is the handler for the service.

When a client needs a food delivery service, it queries the service repository to find
out which services are available, asking the ESP to rank the services according to the
specified criteria and return the best one. If the best service happens to be
FoodOnWheels, then a reference to this service is returned. As for any other service,
the client can then query the service description stored in the repository and perform
method invocations on this service (see Fig. 3). The client has no knowledge that the
service is in fact composite.

Figures 2 and 3 represent what happens "conceptually" from the CES users'
viewpoint. When discussing the implementation, we will show that what happens
behind the scenes is actually slightly different, but users are unaware of these
differences, and the behavior of the system is as described above.

1 A CES may also provide built-in, utility services, that provide frequently needed functionality,

such as e-mail notifications or generation of web forms for collecting input data.

Developing E-Services for Composing E-Services 175

Composition
E-Service

E-Services
Platform

Food
On
Wheels

1:Register
composite

service FoodOnWheels
E-Service

2:Create E-service

3:Register service
In service repository

Service
Provider

Fig. 2. Registration of a composite service, made available as an e-service

Food
On
Wheels

1:search move
services

2:reference
to FoodOnWheels

3:invoke
service

Client
FoodOnWheels

E-ServiceE-Services
Platform

Fig. 3. Service selection and invocation

Service providers can update or delete a service definition, resulting in a
corresponding update or deletion of the service registration on the ESP. Note that,
technically, the definitions on the ESP are "owned" by the CES. This prevents service
providers from directly updating or deleting composite service descriptions on the
ESP, bypassing the CES and causing inconsistencies between information stored at
the CES level and at the ESP level. The CES also allows service provider to monitor
the status of service executions (note that since any composite service is itself an e-
service, monitoring features provided by CES are in addition to whatever mechanism
is provided by the e-services platform for service monitoring). The CES allows
service providers to check how many services are in execution, at what stage they are
in the execution (i.e., which path in the execution flow they have followed, which
service is currently being invoked, what is the value of composite service data, etc.).
CES monitoring capabilities are similar to those provided by WfMSs.

Services created by the CES also include method calls that allow users to control
service executions. More specifically, users can pause, resume, and cancel a service
execution (see Fig. 4). Note that while service providers interact with the CES, clients
of composite services only interact with the services through the service reference
they got as a result of the lookup, as with basic e-services.

Finally, we observe that the CES should be able to compose any service that is
reachable through the ESP on top of which it is developed. Advanced ESPs such as e-

176 Fabio Casati, Mehmet Sayal, and Ming-Chien Shan

speak are capable of searching and accessing e-services delivered through ESPs of
different kinds, either natively or through gateways provided with the platform.
Hence, we conveniently rely on the capability of the ESP to access e-services running
on top of heterogeneous ESP platforms rather than re-developing the same
interoperability features.

Composition
E-Service

Food
On
Wheels

Pause
Resume
Cancel

Get status

Client

Update/Delete service definitions
Monitor running instances

Get aggregated reports
Pause, resume, cancel executions

Service
Provider

FoodOnWheels
E-Service

E-Services
Platform

Fig. 4. Service providers can manage definitions and monitor and control executions, while
service users can control executions (to the extent allowed by the provider)

3 Composite Service Definition Language

This section presents the service composition model and language. We first discuss
the characteristics of a composite service and we underline the differences between
workflow and e-service composition. Then, we present the composite service
description language.

3.1 Workflows and E-Service Composition

This section introduces the main characteristics of composite services. In particular,
we introduce them in terms of differences with respect to workflow applications. In
fact, in many ways, a composite service is similar to a workflow: in order to define a
composite service, the provider mainly needs to specify the flow of service
invocations (i.e., the services to be invoked, their input and output data, and their
execution dependencies). Similarly, in a workflow, the designer must specify the flow
of work (i.e., the work items to be executed, their input and output data, and their
execution dependencies).

Hence, an option that we had considered for CSDL was to simply use an existing
workflow modeling language. However, a language and system for service
composition has many different requirements with respect to workflows. We list the
main differences below:

Developing E-Services for Composing E-Services 177

− Service selection: Nodes in traditional workflow graphs represent administrative
or production work items, assigned to human or automated resources. Often,
workflow models also impose a resource model, based on roles and/or
organizational levels. Selecting a resource typically involves selecting an
employee or an enterprise application by means of a (possibly rich and
expressive) resource language that identifies authorized resources depending on
the roles they play and on the level they belong to.

− Similarly, nodes in an e-service environment represent service invocations. As
part of the service node definition, the provider specifies the service to be
invoked. Although conceptually this is similar to selecting a resource for a work
item, the e-service environment has very different concepts and requirements:
there is typically no fixed “organizational model” or resource taxonomy. The
service is selected depending on its properties, and the selection criteria are
specified in the query language supported by the e-services platform, which is
usually quite powerful and flexible. A service composition language should
support and facilitate the definition of service selection criteria for each node in
the flow, allowing also criteria that depend on the specific instance in execution
(i.e., are sensible to the instance-specific data, such as the customer name or
geographical location). Note that, while in principle it is possible to follow the
“workflow approach” (i.e., identify and classify services in advance and then
specify work assignments through some role expression), this is not required due
to the presence of a (homogeneous) service repository in the ESP and of a service
query and selection language. Besides not being required, the workflow approach
is also not advised. In fact, the e-service environment is very dynamic and
services are introduced, modified, or deleted very often. Hence, the content and
structure of the repository would have to be updated all the time.

− Input and output data: in workflows, input and output data are typically specified
by a set of variable names. The semantics is that the value of the input variables
at the time the node is started is passed to the selected resource, and node
execution results are inserted into the output variables. Communication between
the WfMS and the resources is done through adapters, that understand the syntax
and semantics of the data and perform the required data mappings.
E-services, depending on the platform on top of which they run, typically
communicate in java or XML, and these two languages dictate the rules and the
syntax for data exchanges. Therefore, facility for processing Java and XML
objects and transferring them to and from the invoked e-services must be
provided. Also in this case, while in principle it would be possible to follow the
"workflow approach" and develop adapters that bridge the composition
environment and the e-services to get rid of data mapping issues (at the cost of
transferring the problem onto the adapters), this is luckily not needed. In fact, e-
services running on top of ESPs share the same service model and parameter
passing semantics, so that it is possible to take this into account in the service
composition model and provide facility for communicating with e-services as
prescribed by the ESP, thereby avoiding the need for adapters. Indeed, this is a
considerable advantage, given that developing adapters is difficult and tedious
job, as demonstrated by the cost of commercial system integration platforms. In
addition, it simplifies the use of the CES, since developers may define and deploy
a composite service by simply sending a single file that includes all the business

178 Fabio Casati, Mehmet Sayal, and Ming-Chien Shan

logic. There is no need of changing the configuration of several different systems,
as it happens with current WfMSs2.

− Dynamic environment: Unlike "traditional" business processes, composite e-
services have to cope with a highly dynamic environment, where new services
become available on a daily basis. In order to stay competitive, service providers
should offer the best available service in every given moment to every specific
customer. Clearly, it is unfeasible to continuously change the flow to reflect
changes in the business environment, since these occur too frequently and
modifying a composite service definition can be a delicate and time-consuming
activity. Ideally, composite services should be able to transparently adapt to
changes in the environment and to the needs of different customers with minimal
or no user intervention. Workflow systems do not typically offer these
capabilities.

− Black boxes vs multi-methods interfaces: typically a work item in a workflow
represents the invocation of a business function. The work item is a black box
from the workflow viewpoint. Instead, an e-service may have several states and
state transitions, caused by method invocations. Interacting with an e-service
requires operations to be performed at the service level (e.g., search and
authentication) and operations to be performed at the method level (e.g., method
invocations).

− Security: current workflow technology has very little support for security. Often,
there is no encryption, and access is controlled by means of usernames and
passwords. This is due to the genesis of WfMSs as systems for managing the
work in a restricted and controlled environment, within a corporation. In the
Internet and e-service environment the security requirements are different, and in
particular e-services may require the use of certificates, which therefore should
be also supported by the service composition model and language.

− Business-to-business interactions: a number of standards (e.g., RosettaNet,
cXML, CBL) are being defined in order to support business-to-business
interactions, possibly limited to specific, vertical markets (such as RosettaNet for
the IT industry). Many applications that support such standards are being or have
been developed, and it is likely that many service composition applications will
interact with services that follow one of these standards. A CSDL should
facilitate the composition of such services as well as their invocation, checking
that the appropriate protocol is followed and that exceptions are thrown when
deviations from the protocol are recognized. Many workflow models and systems
do not provide such kind of support, although many vendors are moving in this
direction.

3.2 CSDL Definition

This section presents the Composite Service Description Language. Although CSDL
reuses some of the concepts developed by the workflow community, it has several
innovative features that make it suitable for service composition:

2 The adapter approach can still be followed, if the users so desire, by embedding the mapping

semantics into suitable e-services.

Developing E-Services for Composing E-Services 179

1. It has a two-level service composition model, that distinguishes between
invocation of services and of operations within a service. This is important since
some aspects of the business logic are specific to a service and need to be
specified at the service level, while others are instead specific to each method
invocation, as detailed in the following.

2. The language allows the definition of how to send XML documents as input to
service invocations, and of how to map XML results into composite service data
items. This is important since we expect most of the interactions among e-
services to occur in the form of XML documents.

3. A flexible mechanism to handle certificates is provided, to enable the definition
of which certificates should be sent to a service.

4. A number of adaptive and dynamic features are provided, to cope with the
rapidly evolving business and IT environment in which e-services are executed.

5. Facilities for B2B interactions are provided, in the form of service templates that
can be reused by composite service designers, so that they do not need to be
concerned with technical details about the standard.

6. The entire business logic can be defined within a single XML document, thereby
making easy and practical to provide and use composition as an e-service.

CSDL originates from concepts developed in a previous HP project, called eFlow
[3], that we have extended to take into account the characteristics of ESPs and of the
e-services they support. Here we will only present the innovative aspects of CSDL.

Overview. A composite service is described as a process schema that composes other
basic or composite services. A schema is modeled by a graph, which defines the order
of execution among the nodes in the process. At the top level, the graph may include
service, decision, and event nodes. Service nodes represent invocations of basic or
composite services; decision nodes specify the alternatives and rules controlling the
execution flow, while event nodes enable composite services to send and receive
several types of notifications. A composite service instance is an enactment of a
composite service schema. The same composite service may be instantiated several
times, and several instances may be concurrently running.

As an example, consider a FoodOnWheels service, that delivers any kind of food to
customers' doors. The graphical description of the composite service is shown in
Fig. 5. In the figure, boxes represent service nodes while diamonds represent decision
nodes. The entry points are represented by right-pointing triangles, while end points
are denoted by left-pointing triangles. FoodOnWheels receives order from customers
and, if the customer has a valid credit card, it selects one or more restaurants that
provide the requested food (unless the customer specifies a preference) by accessing a
restaurant selection service. Then, it picks up the food at the restaurants and delivers it
to the customers at the requested time, through a food delivery service. Next, the
customer's credit card is charged, by invoking a credit card payment service. A
composite service is textually specified by an XML document.

A composite service may include the definition of input, output, and local data
items (sometimes also called flow variables in the following). Input data items are
parameters passed to the composite service at activation time. Output data items
represent data returned to the caller at service completion. Input and output data items
can also be used for routing purposes within composite service execution and for
transferring data among service nodes. Local data items are neither input nor output,

180 Fabio Casati, Mehmet Sayal, and Ming-Chien Shan

but are only used within the composite service to perform routing decision or to
transfer data among nodes. The types of variables can be any basic Java type (e.g.
String or Integer), a Java Vector, a generic Object, or an XML document. Each
composite service instance has a local copy of the flow variables.

Start Node

Check credit

Wheel delivery

Restaurant selection

Check passed?

And Join Credit card

yes

Fig. 5. Graphical representation of the FoodOnWheels composite service

Besides the graph that defines the flow of service invocations, the definition of the
composite service also includes security-related specifications. In particular, the
definition of a composite service includes information about the certificates to be used
throughout the flow within service invocations, in case the ESP and the invoked e-
service support or even require the use of digital certificates. By default, the
composite service invokes component services with the privileges (i.e., the certificate)
of the composite service definer. However, the designer may specify that services
should be invoked with the privileges of the composite service users, or with the
privileges specified by the content of a flow variable (for instance, the certificate to be
used may be passed to the composite service as one of its input parameters).

Service Nodes. Service nodes represent invocations of a given service. The service to
be invoked is specified by a search recipe, defined in the query language supported
by the ESP. As the service node is started, the search recipe is executed, returning a
reference to a specific service. Recipes can be configured according to the specific
service instance in execution: every word in the search recipe that is preceded by a
percentage sign “%” is expected to be a reference to a flow variable, and will be
replaced by the value of that variable at the time the service node is started. This
allows the customization of the search recipe according to the value of flow variables.
Note that different activations of a service node may result in the selection of different
services. However, sometimes the designer needs to specify a service node that
should reuse the same service invoked by another service node. The composition
service model allows this by enabling the definition of a Service Reuse attribute that
includes the name of the service node whose service reference is to be reused.

The definition of the service node may include the certificate to be used when
invoking the service’s methods. The definition at the service level overrides the one
done at the top (i.e., composite service) level. Since it is assumed that all invocations

Developing E-Services for Composing E-Services 181

on the same service will use the same certificate, there is no provision for the
definition of a certificate at the method invocation level.

Flow of Method Invocations. E-services, in most ESP models, will have an interface
that allows several operations to be invoked on them. In order to achieve their goals,
clients of these services will typically have to invoke several operations (i.e., call
several methods) on the same service. Correspondingly, CSDL allows the designer to
specify, within a service node, the flow of method invocations to be performed on a
service. For instance, if we are accessing the e-music service, we may want to specify
that we search for a given song (invoking the search method) and, if the price for the
disc that includes the song is lower than a limit, then we buy the whole disc (buyDisc
method), otherwise we simply download the mp3 file of that song only, paying the
requested fee (BuySong method). To simplify both the language and the
implementation, the method flow is specified with the same syntax (and semantics) of
the top-level flow of services, with the only difference that here we are concerned
with the flow of method nodes instead of service nodes. If only one method needs to
be invoked, then the designer needs not specify the flow structure, but only a single
method node. In addition, we also allow the definition of service nodes that have no
method nodes inside. In fact, in a few cases, the designer might only want to execute a
search recipe and get the results, possibly without invoking any method on the
selected service. For instance, a node may simply need to get a service name or
handle in order to pass it to another service.

Method Nodes. A method node defines the method to be invoked on a service and its
input data, how to handle the reply (and specifically how to suitably map the reply
message into flow variables), and how to handle exceptions that may occur during the
method invocation. The name of the operation to be invoked can be statically
specified, or it can be taken from the value of a flow variable, as usual specified by a
string preceded by the percentage sign. The input data to be sent to the method are
specified by a list of variable names or values. In case of variable names, the value of
the variable at the time the node is started is sent as input to the method.

If a method invocation on a service returns a result (e.g., an integer or an XML
document), then the designer needs to specify how information in the document can
be extracted and inserted into flow variables. In case the method output is a (basic or
complex) Java object, then the mapping is simply specified by describing the name of
the flow variable to which this value should be copied. For example, method
CheckCredit returns a Boolean value defining whether the credit check on the
customer is positive or negative. In CSDL, this is defined as follows:

<Method-Output> <Var-Mapping Flow-Var=”Confirmation” />
</Method-Output>

Since it is likely that most of the output data will be a string containing an XML
document, CSDL provides additional support for XML, and in particular it allows the
designer to specify how fragments of the XML output document can be mapped into
flow variables. A flow variable name assumes the value identified by an XSL
transformation or an XQL query on the output document. In the case of XQL queries,
if the flow variable is of type XML, then the XQL query may actually return a set of
elements, or a document. Otherwise, CSDL requires the query to identify a single

182 Fabio Casati, Mehmet Sayal, and Ming-Chien Shan

element or attribute, or an exception is raised. For instance, the following mapping
specifies that the XQL query customerList/customer[0] should be applied to
the method output, and the result of the query should be put into variable “customer”:

<Method Output>
<Var-Mapping Flow-Var="customer" Conversion-Rule=
"customerList/customer[0]" Rule-Type=”XQL” />
</Method Output>

The definition of the query may be static or may include references to flow variables,
as usual preceded by the percentage sign.

4 The Composition E-Service Prototype

This section presents the CES prototype, developed at HP for composing e-speak e-
services. The same design can however be adopted for any other ESP. The prototype
is built on top of a commercial workflow engine (and specifically of HP Process
Manager) that handles the execution of the flow. The need of using a commercial
workflow engine came from the requirement we had of building a robust prototype in
a very short time, that ruled out the possibility of developing one by ourselves. Note
that only the engine was needed for our purposes, so we removed all other HP Process
Manager components to get a lighter and faster system3.

Another key component of the architecture is the gateway, that enables the
interaction between the workflow engine and the ESP, performing the appropriate
mappings and implementing CSDL semantics that could not be supported by the
workflow engine, as discussed below.

Fig. 6 shows the components of the prototype and in particular how they handle
composite service registrations. The CES front-end responds to calls from service
providers and clients (even if the latter are unaware of the fact that they are
communicating with the CES). When a service provider registers a service, the CES
front-end first translates CSDL into the language of the selected workflow engine.
The translation generates a process where nodes correspond to method invocations on
the ESP or on the selected e-services. However, since CSDL is in fact much richer
than traditional workflow languages, the translation is a fairly complex procedure and
requires the insertion of several “helper” nodes and data items that, in conjunction
with the operations performed by the gateway (that has knowledge of the semantics of
such helper nodes), enable the correct implementation of the CSDL semantics.
Examples of issues we have to deal with in the translation include mapping the two-
level (service and method) CSDL model into a single-level one and rewriting the
input and output data items of nodes so that they can have all the information required
to build XML documents and to map back XML replies into process data.

For instance, consider the single problem of mapping the CSDL two-level service
model into a traditional workflow model. In order to map a service node, we need to
insert a node that implements the search recipe (i.e., sends the service selection query
to the ESP), and to define the data items needed for storing and sending certificate
information. In addition, different method invocations occur in the context of the

3 Note that using a WfMS for implementing the CES is not in contrast with our previous

discussion on the unsuitability of a workflow language for modeling composite services.

Developing E-Services for Composing E-Services 183

same "session" with the service. Hence, we need to define and properly initialize
process data items that can carry session IDs from node to node. Note that this
problem could not have been solved by simply defining a subprocess, both because
the need for defining service selection nodes and certificate nodes still remain, and
because nodes in a subprocess do not have access to the variables of the main process
(unless they are passed as input parameters, but even in that case the parameters are
passed by value and not by reference). Where it was not possible to map
appropriately, we encoded part of the semantics in the gateway. For instance, XQL
queries are performed by the gateway. The gateway is also in charge of replacing
references to flow variables in XML documents (i.e., those items preceded by the "%"
symbol) with the actual value.

E-Services
Platform

1:Register
composite

service
G
A
T
E
W
A
Y

Composite Service
Engine

(workflow engine)

2:Create process

3:Register
service in
e-speak

Start Node Complete

Check credi t

Wheel del ivery

Restaurant selection

Check pass ed?

And Join Credit card

yes

Abort

CSDL

Food
On
Wheels

Composition
E-Service

Service
Provider

Fig. 6. Components of the CES prototype and how they handle registrations

We also mention that in this prototype we did not map adaptive features of CSDL,
event nodes, and exceptions (we have only mapped deadline-related exceptions).
These features will be introduced in the next version of the CES.

After the mapping has been completed and the process is installed on the workflow
engine, the CES registers the new service with the e-speak ESP. As the Figure shows,
the CES itself is the handler for the newly registered service. However, this does not
change the validity of the scenario depicted in Figures 2 and 3. Indeed, clients simply
communicate with the (composite) e-service through the reference they get, and they
are not concerned with how the service is implemented on the server side.

When a client invokes a composite service (see Fig. 7), the CES starts the
corresponding process in the workflow system (the mapping between the composite
e-service name and the process name is defined at registration time and stored within
the CES). Activities in the workflow correspond to method invocations on a given
service involved in the composition. From a workflow perspective, all activities are
assigned to the gateway. The gateway receives indication of what to do by the
workflow engine as part of the activity definition, along with data items that provide
(a) context information about the service on which method calls are being or have to

184 Fabio Casati, Mehmet Sayal, and Ming-Chien Shan

be placed (e.g., service references, search recipes, certificates, and mapping
information to process the XML document returned by the method and update the
value of flow variables) and (b) the value of the parameters to be passed as part of the
method invocation.

E-Services
Platform

G
A
T
E
W
A
Y

Composite Service
Engine

(workflow engine)

Food
On
Wheels

Composition
E-ServiceClient

4:Start process

1:Search
move services

2:Reference
to FoodOnWheels

3:Start service

ES ES ES

Fig. 7. Invocation of composite services

When the gateway receives work by the engine, it activates a new thread in order
to process the work. The thread waits for the reply from the service, executes the
mapping rules, and sends the results back to the engine. All the state information is
maintained by engine, and the gateway does not persist anything. This choice is
motivated by the fact that the engine logs all state changes, so there is no need for a
persistent gateway.

Observe that, as experienced by WfMS vendors, building a commercial-strength
workflow engine is not an easy job, especially if it includes tracking, monitoring, and
business transaction functionalities and has demanding requirements in terms of
availability and performance. Hence, we believe that the architecture characterized by
the reuse (or possibly the adaptation) of a commercial workflow engine is the
alternative that most ESP vendors will follow. Indeed, this is the path followed by HP,
whose middleware offering includes e-speak and Process Manager.

We expect that in the future, as ESPs add more functionality in terms of high
availability, load balancing, monitoring, and support for business transactions, the
need for integrating commercial workflow engines will progressively reduce, and the
development from scratch of an interpreter designed and optimized for CSDL will
become realistic.

5 Related Work

To the best of our knowledge, there is no commercial composition/process
management system that can perform e-service composition and satisfy the

Developing E-Services for Composing E-Services 185

requirements stated in Section 3, neither among traditional workflow management
systems (such as MQ Workflow [10], InConcert [7], or Staffware2000 [11]), nor
among newly developed, open, XML- and web-based systems such as Forte' Fusion
[9] and KeyFlow [6].

E-services platform themselves do not provide service composition capabilities,
although all vendors declared interest in moving into this space. The only exception is
WebMethods, who provide a very simple composition language for composing
WebMethods’ services [12]. The language allows the definition of flows that are a
subset of what is allowed by traditional workflow management system (basically it
can only model sequential or conditional flows where services are statically bound to
service nodes), and therefore does not have many of the features presented in this
paper. On the other hand, it is well suited for compositions that have simple
requirements and it is quite easy to use.

Within the research community, approaches that are more closely related to the
work presented here have been proposed by Georgakopoulos at al. [5] and by
Benatallah at el. [1]. The first paper proposes a service-oriented process model
targeted at enabling cross-organizational processes. The paper also presents a service
model, where services are described by a state machine that specifies the valid
“logical” states of a service and the valid state transition, caused by either method
invocations or by transitions performed internally by the service. The paper differs
from ours in that it focuses on the service model and only briefly sketches the service
composition model. Instead, we assume that the service model is provided by the
ESP, and we focus on the composition. In addition, the paper does not deal with
certificates and data mappings/extraction while communicating with the e-services.

Benatallah et al. propose a framework for creating and maintaining virtual
enterprises, where component enterprises share e-services. The main focus of the
paper is on a model for managing service communities. However the paper also deals
with service composition, and proposes an ECA-rule based approach for defining the
composition. Our work differs in that CSDL has a graph-based approach to specify
the composition. In addition, the paper also does not deal with search recipes,
certificates, and data mappings and extraction, which are critical in our approach.

6 Concluding Remarks

This paper has presented the functionality and implementation of an e-service for
composing e-services. The main contributions of this paper are:

− The idea and notion of providing composition functionality as an e-service, to be
used not only by the owner of the ESP, but also by any (authorized, and possibly
paying) user.

− A discussion of the characteristics of composite e-services and of their
differences with respect to "traditional", workflow-like composition.

− The definition of a composition model suitable for e-services.
− The description of our prototype implementation, that shows an approach that can

be reused for implementing composition on top of any ESP.

This effort is the initial part of a long-term work that has the purpose of developing
a lightweight engine that can execute CSDL services, based on the assumption that

186 Fabio Casati, Mehmet Sayal, and Ming-Chien Shan

future ESPs will take care of providing load-balancing, monitoring, tracking, and of
other functionality. In addition, we plan to integrate more concepts taken from eFlow,
including generic nodes, multiservice nodes, and dynamic conversation selection.

References

1. B. Benatallah, B. Medjahed, A. Bouguettaya, A. Elmagarmid, and J. Beard. Composing
and Maintaining Web-based Virtual Enterprises. Procs. of the VLDB-TES Workshop,
Cairo, Egypt (2000)

2. F. Casati and M.C. Shan. Process Automation as the Foundation for E-Business. Procs. of
VLDB2000, Cairo, Egypt (2000)

3. F. Casati, S. Ilnicki, L.J. Jin, and M.C. Shan. eFlow: an Open, Flexible, and Configurable
System for Service Composition. Procs. of WECWIS, Milpitas, CA, USA (2000)

4. D. Georgakopoulos, M. F. Hornick, and A. P. Sheth. An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure. Distributed
and Parallel Databases 3(2) (1995)

5. D. Georgakopoulos, H. Schuster, D. Baker, and A. Cichocki. Process-based e-service
Integration. Procs. of the VLDB-TES Workshop, Cairo, Egypt (2000)

6. Keyflow Corp. Workflow Server and Workflow Designer (1999)
7. Ronni T. Marshak. InConcert Workflow. Workgroup Computing report, Vol 20, No. 3,

Patricia Seybold Group (1997)
8. F. Leymann, D Roller. Production Workflows. Addison Wesley (2000)
9. J. Mann. Forte' Fusion. Patricia Seybold Group report (1999)
10. IBM. MQ Series Workflow - Concepts and Architectures (1998)
11. Staffware Corporation, Staffware2000 White Paper (1999)
12. WebMethods Inc. WebMethods Enterprise (2000)

	1 Introduction
	2 Service Composition as an E-Service
	2.1 Basic ESP Functionality
	2.2 CES Functionality

	3 Composite Service Definition Language
	3.1 Workflows and E-Service Composition
	3.2 CSDL Definition

	4 The Composition E-Service Prototype
	5 Related Work
	6 Concluding Remarks
	References

