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Abstract. Reactive systems are systems whose purpose is to maintain a
certain desirable state of affairs in their environment, and include infor-
mation systems, groupware, workflow systems, and control software. The
current generation of information system design methods cannot cope
with the high demands that originate from mission-critical application,
geographic distribution, and a mix of data-intensive, behavior-intensive
and communication-intensive properties of many modern reactive sys-
tems. We define an approach to designing reactive software systems that
deals with these dimensions by incorporating elements from various in-
formation system and software design techniques and extending this with
formal specification techniques, in particular with model checking. We
illustrate our approach with a smart card application and show how in-
formal techniques can be combined with model checking.

1 Introduction

The past ten years have shown an explosion of different types of information tech-
nology in which the classical distinction between information systems and control
software has disappeared. In addition to the data-intensive applications like or-
der administrations, and control-intensive applications like production control,
there is now widespread use of email, office agendas, shared workspaces, workflow
management, enterprise resource planning (ERP), electronic data interchange
(EDI), and internet-based ecommerce applications. In these applications, we see
a varying mix of complexity along the three major dimensions of functional soft-
ware properties: data, behavior, and communication. (That these are the three
important dimensions of functional software properties is argued elsewhere [13].)

A fourth dimension has emerged as important as well: geographical distribu-
tion. For example, classical information systems may be distributed over several
sites, and they may be connected to classical production control systems in a
complex network of applications that may even cross organizational boundaries.

A fifth dimension relevant to software is the degree to which it is mission crit-
ical. This is not a property of the software as such but of the way it is used by an
organization. We now have many companies large parts of which basically are

* Partially supported by NWO-SION, project number 612-323-419.

K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.): CAiSE 2001, LNCS 2068, pp. 93-[I07] 2001.
© Springer-Verlag Berlin Heidelberg 2001



94 Roel J. Wieringa and David N. Jansen

software systems, operated by a few employees. This has long been the case in
the finance business but it is now also the case for application service providers,
supply chain integration, and business-to-consumer electronic commerce. When
these applications fail, their businesses lose money by the minute. As a conse-
quence, there must be ample attention to reliability, security, safety and other
mission-critical attributes. We claim that formal techniques have a role to play
in this area and later in this paper we argue how this can be done.

The current generation of functional and object-oriented methods do not suf-
fice to deal with all of these dimensions. Structured techniques [TT/T5] tend to
spaghetti-like data flow diagrams with a sloppy semantics, and object-oriented
techniques have evolved into a Unified Modeling Language (UML) whose com-
plexity is not motivated by the complexity of the systems to be designed, but by
the number of stakeholders involved in defining the notation [T2J10]. In addition,
the complexity of the UML, as well as the complexity of the process in which
the UML is defined, leads to a continuous stream of revisions and an incomplete
and ambiguous semantics.

In this paper we propose a simple approach that picks the elements from
structured and object-oriented approaches that have turned out in practice to
be very useful, and extends this with a formal specification approach to deal
the increasing need for reliability and precision. We claim that the resulting ap-
proach, called TRADE (Techniques for Requirements and Architecture DEsign)
is useful bag of tools to use when designing complex information systems.

The unifying view that we present starts from the concept of a reactive
system, introduced by Harel and Pnueli [4] 15 years ago. This is explained in
section 2] Section B]defines our mix of structured and object-oriented techniques
and discusses how formal techniques can be combined with informal techniques.
Appendix [ illustrates out claim by an example specification of a smart card
application, and of two properties that we model checked in our specification.
Details about the techniques and guidelines are given elsewhere [3JG14].

2 Reactive Systems

A reactive system is a system that, when switched on, is able to respond to
stimuli as and when they occur, in a way that enforces or enables desired be-
havior in the environment [4[7]. Stimuli may arrive at arbitrary times and the
response must be produced soon enough for the desirable effect to take place.
Somewhere in the environment, events occur, that cause stimuli at the system
interface. The system responds based on an internal model that it maintains of
its environment, and the response leads to, or enables, a desired action in the
environment. Examples of reactive systems are information systems, workflow
management systems, email systems, systems for video conferencing, shared of-
fice agenda systems, chat boxes, group decision support systems, process control
software, embedded software and game software.

Reactive systems are to be distinguished from transformational systems,
which are systems that, when switched on, accept input, perform a terminat-
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ing computation, produce output, and then turn themselves off. Examples of
transformational systems are compilers, assemblers, expert systems, numerical
routines, statistical procedures, etc. A transformational system can be viewed
as computing single, isolated stimulus-response pairs. Transformational systems
have no relevant internal state that survives a single stimulus-response pair. To
specify a transformational system, you must specify a terminating algorithm,
whereas to specify a reactive system, you must specify stimulus-response behav-
ior. Both kinds of system must be switched on before used, but when a reactive
system switches itself off this is because something wrong has happened. For a
transformational system the opposite is true: when it does not switch itself off,
something is wrong.

3 Requirements Specification for Reactive Systems

3.1 Functions

Reactive systems exist to provide services to their environment. They provide
these services by responding to stimuli. We define a function of a system as any
service delivered by the system to its environment. A function delivers value to its
environment. It is the ability to deliver value to its environment that motivates
someone to pay money for the system.

To specify a function, we must at least specify what value is delivered by
the function and when it is delivered, i.e. which event triggers it. Figure[d] gives
an example. In our view it is not a good idea to specify detailed scenarios for
functions. These scenarios obscure the view of what the function is for (which
value is delivered). They also mix requirements (what do we need the system
for) with architecture (what are the high-level components that will deliver these
services). As we illustrate in the appendix, a precise architecture description of
the system will include a detailed specification of the behavior of the system.

3.2 The Environment

The interactions of a software system always consist of exchanges of symbol
occurrences (e.g. data items, event occurrences) with the environment. A truly
implementation-independent description of the data manipulated by the system
restricts itself to the symbol occurrences that cross the external interface shown
in the context diagram. These symbol occurrences have a meaning, which must
be understood by the designers and users in order to understand the behavior
of the system. The subject of these exchanges is called the subject domain of
the interactions. For example, the subject domain of our ticket selling example
system in the appendix consists of tickets, routes, etc. These are the entities
about which the system communicates with its environment. The subject domain
is often modeled by an entity model, such as illustrated in Fig.@l

In addition to the subject domain, the environment of the system consists
of a connection domain, which consists of entities that can observe the subject
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Fig. 1. Aggregation hierarchy and system aspects.

domain and provide stimuli to the system, and entities that can act on the
subject domain based on the responses of the system. In control software, these
entities are called sensors and actuators, but people can play these roles too.

A third element of the environment is the implementation platform, which
is the collection of programmable entities that will contain the software. When
software engineers talk about the software environment, they often mean the im-
plementation platform. When information engineers talk about the environment,
they usually mean the subject and connection domains.

3.3 Requirements and Architecture

We define a requirement as a desired property of the system and an architecture
as the way components are put together in order to realize these desired proper-
ties. The architecture dimension introduces an aggregation hierarchy, in which
components at a lower level jointly realize properties of a component at a higher
level.

In our view, requirements are not restricted to external properties. A re-
quirement of a system is just any desired property of the system, be it a desired
function or a desire that the software be executable on a certain implemen-
tation platform. An important kind of requirement is of course the functional
requirement, which is basically a description of the desired system functions. In
addition to the value delivered to the environment, there are at least two impor-
tant aspects of software system functionality that usually have to be specified,
namely behavior, which is the ordering of stimulus-response pairs in time, and
communication, which is the ordering of stimulus-response pairs in “space”, i.e.
the communication links that connect the stimuli and responses with events and
actions in the subject domain. These aspects are repeated at every aggregation
level. So for each part of the system, we can ask what its desired functions, behav-
ior and communication properties are, all the way down to individual software
objects (Fig.m).

A software system has many other properties, including safety, security and
reliability properties etc. For some of these properties, formal techniques are
needed to show their presence or absence. We give an example in the appendix.
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Fig. 2. The TRADE approach.

3.4 Design Approach

In this paper, by design we mean an activity in which the desired properties
of a product are decided. Design is making decisions, and it results in a speci-
fication that documents these decisions. This use of the term agrees with that
in other branches of manufacturing, where design is followed by planning the
production process, manufacturing the components, assembling the components
and distribution and sales.

This means that specifying requirements in our terminology is a design ac-
tivity! Requirements specification is solution specification; the problem to be
solved exists in the environment of the system that should solve it (it would
be embarrassing if it would reside in the system) [5]. Figure @l summarizes the
TRADE approach. The environment model is an outcome of problem analysis.
It represents the environment as consisting of entities, their behavior and their
communication. We assume the problem to be solved has been clearly stated
and analyzed. The external requirements are desired external system properties
and include desired system functions, behavior and communication with exter-
nal entities. The essential architecture of a software system is the architecture
it would have if we had ideal implementation technology. It is motivated by
the structure of the external environment and the system requirements and not
by any implementation considerations [8]. Other terms that have been used for
this are logical and conceptual architecture. The implementation platform is the
collection of programmable entities that will contain the software. These too
have functions, behavior and communication. The implementation architecture
is the mapping of the essential architecture to the programmable entities in the
available implementation platform.

3.5 Design Techniques

There are very few techniques needed to specify the aspects listed in Fig.[Il
The second column of table [ lists a few simple techniques that are sufficient.
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Fig. 3. The techniques in TRADE.

In the following explanation, the term “entity” is used to indicate whatever a
description technique is applied to: the entities in the environment, the system
itself, or parts of its architecture or of its implementation platform.

— An entity-relationship diagram (ERD) represents entity types and their car-

dinality properties. We restrict the meaning of ERDs to classification and
identification (counting) properties of entities. ERDs can be used to represent
the decomposition of the environment or of an architecture into entities. It is
often used to represent a decomposition of the subject domain into entities.
A complex extension of ERDs is the UML static structure diagram (SSD),
which allows the declaration of services (interfaces, operations, signal re-
ceptions etc.) offered by entities, which are now called “objects” in object-
oriented methods. Usually there is too much interface detail in a system to
be all represented in diagram form.

Mission statement and function descriptions describe the things that an en-
tity will do for its environment in natural language. They should emphasize
the value delivered for the environment. They can be used to specify the
mission and functions of the system and of the entities in the system’s ar-
chitecture.

An event list of an entity is a list of all events that the entity should respond
to, and the desired response of the entity. It can be a list of informal natural
language descriptions, but this can be refined into state transition tables
or diagrams. Statecharts are complex state transition diagrams that can
represent information in an event list in diagram form.

A communication diagram consists of boxes and arrows that represent enti-
ties and their communication channels. The boxes may represent individual
entities or entity types. In the second case, the arrows represent communi-
cation channels between instances of the types. A communication diagram
may be used to represent communication in the environment, between the
system and its environment, between entities in the system architecture, and
between entities in the implementation platform.

The appendix contains examples of the use of these techniques, discusses their
meaning informally and indicates their use.
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Fig. 4. Combining informal techniques with model checking.

3.6 Formal Techniques

In our view the relationship between the formal and informal parts of a specifi-
cation (Fig.M) is that the formal part rephrases fragments of the informal part.
The formal part can consist of text or diagrams with a formal semantics. To
illustrate the viability of this approach, we have defined a formal execution se-
mantics for object-oriented statecharts that is suitable to represent essential-level
behavior [3]. Barring unrestricted object creation, the semantics of a collection
of object-oriented statecharts is a finite-state labelled transition system (LTS),
which is the mathematical structure in Fig.[ . We have also defined an extension
of computation tree logic with actions and real time (ATCTL) to be used as
a property language for reactive systems, and defined a translation of ATCTL
into the property language of the Kronos model checker [I]. We implemented
these using the diagram editing tool TCM [2] as a front-end to Kronos. Space
restrictions prevent us from giving more details about this.

The fat arrows in Fig.Blrepresent manipulations done by machine. The solid
fat arrows have been implemented in TCM, and we used this on our example
specification in the appendix to check some desirable properties. The analyst
does not have to know or understand the translations behind the fat arrows.
The combination of TCM and Kronos thus helps the analyst to understand the
design in an early stage without implementing it and without having to learn a
complex formal language. It also helps making the informal parts of the model
precise.

4 Summary and Further Work

In this paper we have only discussed techniques and showed their place in an
approach to reactive system specification and design. We have not discussed pre-
cise or formal semantics, or guidelines for using these techniques. A compendium
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of these guidelines has been prepared elsewhere [14]. Current work includes im-
plementing the dashed fat arrows in Fig.[dl and applying the resulting tool to a
number of case studies.

Acknowledgement. The paper benefited from many discussions with and de-
tailed comments of Michael Jackson, and from comments by Jaap-Henk Hoep-
man on security mechanisms.
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— Name of the system: Electronic Ticket System (ETS).
Purpose of the system: Provide capability to buy and use tickets for a railway
company using a Personal Digital Assistant and a smart card.
— Responsibilities of the system:
e Sell a ticket
e Show a ticket on request
e Stamp a ticket for use
e Refund a ticket
Exclusions:
e The system will not provide travel planning facilities.
e Only tickets for making a trip by one person will be considered.

Fig. 5. Mission of the ETS.

The Electronic Ticket System (ETS)

The Electronic Ticket System (ETS) is a software system by which travelers
can buy a railway ticket with a smart card when put in their Personal Digital
Assistant (PDA). The ticket is a digital entity than can be created on the smart
card itself. Payment is done through a wireless connection with the computer
system of the railway company, that itself is connected to the computer systems
of a clearing house [9].

External Requirements: Functions and Other Properties

The mission statement of a system states the purpose of the system and should
be written down for all reactive systems. It lists its major responsibilities and,
possibly, things that the system will not do. Responsibilities are things the sys-
tem should do, exclusions are things the system will not do. There are infinitely
many things the system will not do, but writing down a few of these is an im-
portant tool in expectation management. Figure [ shows the mission statement
of the ETS.

Functions can be presented in the form of an indented list called a function
refinement tree. This is useful for all reactive systems, and can be used to bound
the discussion about desired functionality with the stakeholders. The current
system is so simple that all its functions have already been listed in the mission
statement, and a separate function refinement tree is not needed. Each function
should be specified from the standpoint of the system, emphasizing the value
delivered to the environment. See Fig.[6] for an example.

One of the required ETS properties is that it should offer the functionality
described above. Other required properties include the ones listed in Fig.[[1 We
discuss the formal specification and model checking of these properties at the
end of the appendix.
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— Name: Sell a ticket.

— Triggering event: Traveler requests to buy a ticket.

— Delivered value: To sell a railway ticket to a traveler at any time and place
chosen by the traveler.

Fig. 6. Description of an ETS function.

P1 A traveler cannot get a ticket without paying for it.
P2 A traveler who has paid for a ticket gets it.

P3 A refunded ticket cannot be used any more.

P4 A fully used ticket cannot be refunded.

P5 It is not possible to use a ticket twice.

Fig. 7. Other required ETS properties.

O
-

P

Traveller

Bank Clearing house

P

Ticket collector

Fig. 8. Communication context of ETS.

Environment: Entities and Communication

Desired properties, including system functions, are provided by interacting with
the environment in stimulus-response behavior. Figure B shows the communi-
cation architecture of the environment, including the external interfaces of the
system. The diagram abstracts from the internal distribution of the software
system over physical entities of the implementation platform, and from the way
communication channels are realized. That distribution will be part of the ar-
chitecture specification shown later. The context diagram views the system as a
black box offering certain functionality and shows which communication chan-
nels with the environment exist. It is always useful to draw a communication
diagram of a reactive system. It separates the part of the world to be designed
(the system) from the part of the world that is given (the environment).
Figure [ shows an entity model of the subject domain of the ETS. It should
be supplemented by a number of constraints, such as that all segments of a route
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Fig. 9. Subject domain of the ETS.

should be connected. Note that the ERD is a model of the environment, not of
the data stored by the system. Note also that the traveler may be different from
the account holder.

Whenever there is potential misunderstanding about the meaning of the data
that crosses the external system interface, as in data-intensive reactive systems,
it is useful to make a subject domain ERD that represents the types of entities
to which the external interactions of the system refer.

External Requirements: System Event List

Each function is triggered by an external event, a condition change, or a tem-
poral event. Each function can be refined into a set of possible transactions,
where a transaction is an atomic interaction of the system. Each transaction in
turn can be represented by a tuple (event, stimulus, current state, next state,
response, action), which tells us which stimulus triggers the transaction, which
event is supposed to have caused this stimulus, what the response should be,
given the current state of the system, and what action is assumed to be caused
by the response. The current and next state in the tuple are really states of the
dialog between the system and its environment. To perform its function, the
system must maintain a representation of this state. In general, there may be
a many-many relationship between transactions and functions: One transaction
may occur in several functions and one function may contain several transac-
tions.



104 Roel J. Wieringa and David N. Jansen

<

>

Ready to sell

Traveller requests to buy a ticket ATralveller aborts

Ask for route and ticket information v

Route and ticket Q
G information requested
Traveller has given all information
vOffer to sell ticket

Ticket sale

Traveller selects route

Traveller selects ticket type

offered Traveller declines offer

Traveller accepts offer show abort message

Request payment from clearing house

Y

Payment requested
Bank accepts payment Bank refuses

or
bank does not respond

Create ticket
Show success message

Show abort message

Fig. 10. Selling dialog.

Often, we can represent parts of the system event list by a state transition
diagram, e.g. a statechart or its simpler ancestors Mealy and Moore diagrams.
Figure [0 gives the event list for the selling function in the form of a Mealy
diagram. Rectangles represent states, arrows state transitions, and arrow labels
list events above the line and actions below the line.

An event list is always useful to make, but different reactive systems require
different levels of detail. Some information systems have merely two types of
external events to respond to, namely query and update, but in many other cases
there are also state change events and temporal events to respond to. Refining the
system function descriptions into an event list uncovers these desired responses.

Architectures and Implementation Platform

Essential Architecture. The essential, distribution-independent architecture of
the system is shown in Fig.[[T] It uses a hybrid notation in which parallel bars
represent data stores and rectangles represent stateful objects.

— The selling dialog (Fig.[I0) has been allocated to a single object class, each
instance of which can execute this dialog.

— The other functions are simple transformations that produce output or per-
form updates on request.
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Fig. 11. Essential communication architecture of the system in a hybrid notation

— Data about the subject domain has been partitioned into three data stores.

Figure [T2 represents the structure of the data stores. Now we reuse the subject
domain ERD to represent the structure of the data and allocate the data to
stores. Note that the system does not contain data about all subject domain
relationships.

A communication diagram such as [Tl is very useful in reactive system de-
sign to show simple communication architectures. They can be used to show the
high-level communication architecture of a system and simple lower-level archi-
tectures, as in the ETS. However, for most systems, at lower aggregation levels
they quickly become too complicated to be useful.

Checking Desired Properties. To check whether the essential architecture satisfies
all desired properties, we created our model with the TCM editor and generated
Kronos input for it. We also formalize the desirable properties in ATCTL, and
checked whether they hold in our essential architecture, using Kronos. As an
illustration, consider these two properties:

P1 You cannot get a valid ticket without paying. =3(T _pank_pay_yesifvalid).
P3 A refunded ticket will never become valid again. refunded — =3 valid

P1 was shown to be true using Kronos. The negation of P3 was checked with
Kronos and proved to be unreachable. Because the negation is unreachable, the
property holds.

The meaning of these proofs is that the system, if implemented this way, will
be secure. It does not mean that the environment will be secure. For example,
it does not mean that an insecure connection to the railway company or the
clearing house is impossible. And with such an insecure connection, third parties
could masquerade as bank, and cause the railway company to give a ticket to the
passenger without valid payment. If that should be excluded, then the system
boundary should be extended to include the connections and we should formulate
properties of these connections.
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Fig. 12. Data about the subject domain.

Implementation Architecture. The physical distribution architecture of the sys-
tem is represented by the UML deployment diagram of Fig.[[3 This is the im-
plementation platform given to the designer.

Figure[I4 shows the allocation of the essential architecture elements of Fig.
to the nodes in the deployment network. The following design decisions have been
made:

— Functionality is allocated to nodes where it is needed.

— Duplication of data stores is added to avoid frequent communications. The
price to pay is that duplicate data stores may be mutually inconsistent.
Because the rail network is not likely to change very frequently, and changes
are planned far in advance, there is a small risk that this will ever happen.

— Communication interfaces are added.
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Fig. 13. Physical implementation platform and context.
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Fig. 14. Allocation of components of the essential architecture to the physical deploy-

ment network.

The next stage in creating a secure design would be to check that the imple-
mentation is correct with respect to the higher-level design. The implementation
is represented by Fig.[[4] the data model of Fig.[T2 and the textual specifications
of all elements of these diagrams (these are not given here). The specification is
given by the high-level diagram of Fig.[TTl and the textual specifications of the
data stores, transformations and object classes contained in it. Both models have
a formal semantics in terms of labeled transition systems, which makes classical
bisimulation equivalence checking techniques applicable, at least in principle.
Working this out for practical examples is subject of future research.
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