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Abstract. This paper introduces a new technique for the verification of both 
safety and usability requirements for safety-critical interactive systems. This 
technique uses the model-oriented formal method B and makes use of an hybrid 
version of the MVC and PAC software architecture models. Our claim is that 
this technique –that uses proofs obligations– can ensure both usability and 
safety requirements, from the specification step of the development process, to 
the implementation. This technique is illustrated by a case study: a simplified 
user interface for a Full Authority Digital Engine Control (FADEC) of a single 
turbojet engine aircraft. 

1 Introduction 

Formal specification techniques become regularly used in the area of computer 
science for the development of systems that require a high level of dependability. 
Aircraft embedded systems, the failure of which may cause injury or death to human 
beings belong to this class. 

On the one hand, user-centered design leads to semi-formal but easy to use 
notations, such as MAD [1] and UAN [2] for requirements or specifications, or 
GOMS [3] for evaluation. These techniques could express relevant user interactions 
but they lack clear semantics. So, neither dependability nor usability properties can be 
formally proved. 

On the other hand, adaptation of well-defined approaches, combined with 
interactive models, gives partial but positive results. Among them, we find the 
interactors and related approaches [4, 5], model-oriented approaches [4], algebraic 
notations [6], Petri nets [7] or temporal logic [8, 9]. Thanks to these techniques, some 
safety as well as usability requirements may be proved. 
Nevertheless, theses formal techniques are used in the development process in a 
limited way because of two constraints: 
• Formal techniques mostly depend on ad hoc specification models –e.g. interactors– 

and do not concern well-known software architecture models as Arch, MVC or 
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PAC. As a consequence, these unusual models make the specification task hard to 
use by most user interfaces designers. 

• Few of these formal techniques can preserve formal semantics of the requirements 
from the specification to the implementation steps. Most of them can prove 
ergonomic properties at the specification level only. So, it cannot be proved that 
the final software is exactly what has been specified. 
This article focuses on the B method [10, 11]. On the one hand, compared to VDM 

and Z, it makes possible the definition of a constructive process to build whole 
applications, with the respect of all the rules by the use of a semi-automatic tool [12]. 
On the other hand, the interactive system can be specified with respect to well-known 
software architecture models as Arch [13]. In this paper, we will show how the B 
method can be used to specify a critical system, the FADEC user interface case study, 
and how dependability as well as user interface honesty can be proved. 

This work may be considered as a new step towards the definition of an actual 
interactive development method based on formal approaches. Our first results [13, 14] 
focus on low-level interaction mechanisms, such as mouse and window control. We 
showed that the B method might be used with profit in interactive development. Our 
aim in this article is to apply the method on critical systems for two main reasons. 
First, we believe that critical systems are applications of primary importance for safe 
methods. In addition, critical systems introduce special needs in terms of flow of 
control. So, we focus on two main points: (1) how can the specification of both 
critical systems and the B method influence software architecture –e.g. how B method 
constraints can be interpreted into well known HCI approaches– and (2) what are the 
benefits of using the B method for the specification process of critical systems. 
The paper is organized as follows: in section 2, the B method is presented, and some 
previous results in applying formal approaches in HCI context are briefly 
summarized. In section 3, a study upon architecture models suitable for both critical 
systems and the B method is detailed. Last, the fourth section describes the 
specification of the case study and explains how the safety and usability requirements 
can be formally checked. 

2 The B Method and Interaction Properties [14] 

The B method allows the description of different modules, i.e., abstract machines that 
are combined with programming in the large operators. This combination enables 
designers to build incrementally and correctly –once all the proof obligations are 
proved– complex systems. Moreover, the utmost interest in this method, in our case, 
is the semi-automatic tool it is supported by. 

2.1 The Abstract Machine Notation 

The abstract machine notation is the basic mechanism of the B method. J.-R. Abrial 
defined three kinds of machines identified by the keywords MACHINE, 
REFINEMENT and IMPLEMENTATION. The first one represents the high level of 
specification. It expresses formal specification in a high abstract level language. The 
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second one defines the different intermediate steps of refinement and finally the third 
one reaches the implementation level. Do note that the development is considered to 
be correct only when every refinement is proved to be correct with respect to the 
semantics of the B language. Gluing invariant between the different machines of a 
development are defined and sets of proof obligations are generated. They are used to 
prove the development correctness. 

A theorem prover including set theory, predicates logic and the possibility to 
define other theories by the user, achieves the proof of these proof obligations. The 
proving phase is achieved either automatically, by the theorem prover, or by the user 
with the interactive theorem prover. The model checking method, which is known to 
be often overwhelmed by the number of states that are needed to be computed is not 
used in the present version of the B tool [12]. 

2.2 Description of Abstract Machines 

J.-R. Abrial described a set of relevant clauses for the definition of abstract machines. 
Depending on the clauses and on their abstraction level, they can be used at different 
levels of the program development. In this paper, a subset of these clauses has been 
used for the design of our specifications. We will only detail these clauses. A whole 
description can be found in the B-Book [10]. The typical B machine starts with the 
keyword MACHINE and ends with the other keyword END. A set of clauses can be 
defined in between. In our case, these clauses appear in the following order: 
− INCLUDES is a programming in the large clause that allows to import instances of 

other machines. Every component of the imported machine becomes usable in the 
current machine. This clause allows modularity capabilities.  

− USES has the same modularity capabilities as INCLUDES except that the 
OPERATIONS of the used machines are hidden. So, the imported machine instances 
cannot be modified. 

− SETS defines the sets that are manipulated by the specification. These sets can be 
built by extension, comprehension or with any set operator applied to basic sets. 

− VARIABLES is the clause where all the attributes of the described model are 
represented. In the methodology of B, we find in this clause all the selector 
functions which allow accessing the different properties represented by the 
described attributes. 

− INVARIANT clause describes the properties of the attributes defined in the clause 
VARIABLES. The logical expressions described in this clause remain true in the 
whole machine and they represent assertions that are always valid. 

− INITIALISATION clause allows giving initial values to the VARIABLES of the 
corresponding clause. Do note that the initial values must satisfy the INVARIANT 
clause predicate. 

− OPERATIONS clause is the last clause of a machine. It defines all the operations –
functions and procedures– that constitute the abstract data type represented by the 
machine. Depending on the nature of the machine, the OPERATIONS clause 
authorizes particular generalized substitutions to specify each operation. The 
substitutions used in our specifications and their semantics is described below. 
Other syntax possibilities are offered in B, and we do not intend to review them in 

this article, in order to keep its length short enough. 
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2.3 Semantics of Generalized Substitutions 

The calculus of explicit substitutions is the semantics of the abstract machine notation 
and is based on the weakest precondition approach of Dijkstra [15]. Formally, several 
substitutions are defined in B. If we consider a substitution S and a predicate P 
representing a postcondition, then [S]P represents the weakest precondition that 
establishes P after the execution of S. The substitutions of the abstract machine 
notation are inductively defined by the following equations. Do notice that we 
restricted ourselves to the substitutions used for our development. The reader can 
refer to the literature [10, 11] for a more complete description: 

[SKIP]P ⇔ P (1) 

[S1 || S2]P ⇔ [S1]P ∧  [S2]P (2) 

[PRE E THEN S END]P ⇔ E ∧  [S]P (3) 

[ANY a WHERE E THEN S END]P ⇔ ∀  a (E ⇒  [S]P) (4) 

[SELECT P1 THEN S1 WHEN P2 THEN S2 ELSE S3 END]P ⇔ 
(P1⇒ [S1]P) ∧  (P2⇒ [S2]P) ∧  ((¬P1 ∧  ¬P2)⇒ [S3]P) 

(5) 

[x:=E]P ⇔ P(x/E) (6) 

The substitution (6) represents the predicate P where all the free occurrences of x 
are replaced by the expression E. Do notice that when a given substitution is used, the 
B checker generates the corresponding proof obligation, i.e., the logical expression on 
the right hand side of the operator "⇔". This calculus propagates a precondition that 
must be implied by the precondition set by the user. If not, then the user proves the 
precondition or modifies it. For example, if E is the substitution [x+1] and P the 
predicate x ≠ 2, the weakest precondition is x ≠ 1. 

2.4 Interaction Properties 

Proving interaction properties can be achieved by the way of model checking or 
theorem proving [16]. Theorem proving is a deductive approach to the verification of 
interactive properties. Unless powerful theorem provers are available, proofs must be 
made "by hand". Consequently, they are hard to find, and their reliability depends on 
the mathematical skills of the designer. Whereas model checking is based on the 
complete verification of a finite state machine, and may be fully automated. However, 
one of the main drawbacks of model checking is that the solution may not be 
computed due to the high number of states [16]. The last sessions of EHCI as well as 
DSV-IS show a wide range of examples of these two methods of verification. 

For instance, model checking is used by Palanque et al. who model user and system 
by the way of object-oriented Petri nets –ICO– [17]. They argue that automated 
proofs can be done to ensure first there is no cycle in the task model, second a specific 
task must precede another specific task (enter_pin_code and get_cash in the ATM 
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example) and third the final functional core state is the final user task (get_cash and 
get_card). These proofs are relative to reachability. Furthermore, Lauridsen uses the 
RAISE formalism to show that an interactive application –functional core, dialogue 
control and logical interaction– can be built using translations from the functional 
core adapter specification [18]. Then, Lauridsen shows that his refinement method 
can prove interaction properties as predictability, observability, honesty, and 
substitutivity. 

In the meantime, Paternó and Mezzanotte check that unexpected interaction 
trajectories expressed in a temporal logic –ACTL– cannot be performed by the user. 
The system –a subset of an air traffic control application– is modeled by interactors 
specified with LOTOS [19]. Brun et al. use the translation from a semi-formal task-
oriented notation –MAD– [1] to a temporal logic –XTL– [8] and prove 
reachability [20]. 

Our approach in this article –with the B method– deals with the first method, i.e., 
theorem proving. Yet, the method does not suffer from the main drawbacks of 
theorem proving methods, i.e., proving all the system “by hand”. In our former 
studies [13, 14], about 95% of the proofs obligations, regarding visibility or 
reachability, were automatically proved thanks to the “Atelier B” tool. Our present 
work –the FADEC user interface specification– has been successfully and fully 
automatically proved. All proof obligations, regarding safety and honesty, have been 
distributed in the separate modules of the system specification, as we will see later on. 

Moreover, since the specification is incrementally built, the proofs are also 
incrementally built. Indeed, compositionality in B ensures that the proofs of the whole 
system are built using the ones of the subsystems. This technique simplifies 
considerably the interaction property verifications. And then, this incremental 
conception of applications asserts that the proofs needed at the low-level B-machines 
of the application, i.e. the functional core, are true at the higher levels, i.e. the 
presentation. So, the reliability is checked by construction. 

3 The FADEC Case Study and Its Software Architecture 

A FADEC (Full Authority Digital Engine Control) is an electronic system that 
controls all the crucial parameters of aircraft power plants. One of the system roles is 
to lower the cognitive load of pilots while they operate turbojet engines, and to reduce 
the occurrence of pilot errors. 

Our case study focuses on the startup and the shutdown procedures of a single 
turbojet engine aircraft. In our scenario, the pilot controls the engine ignition –off, 
start, run– and the fuel valve –closed, open. The engine states can be perceived via the 
fuel pressure –low, normal, high– and the engine temperature –low, normal, high. The 
system interface is composed of lights and push buttons. The interface layout adopts 
the dark cockpit philosophy which minimizes distracting annunciation for pilots, i.e. 
only abnormal or transition states are visible. So, the normal parameters of the engine 
during flight do not light up any interface lights. 
In this section, we start with an analysis of constraints imposed by the B language 
over architecture design. Secondly, we explain why “pure” MVC and PAC models 
fail against B requirements. Lastly, we describe our hybrid model, named CAV. 
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3.1 Rules for B Architecture Design 

Our case study belongs to the safety-critical interactive-system category. More 
precisely, as in common interactive systems, the user controls the software system, 
but, as a reactive system, a third part, that evolves independently from both the 
software system and the user, must also control the system. In first approximation, the 
software may be modeled as a unique view that displays some functional core under a 
specific interactive control. Our first idea for designing such a system was to use a 
well-known multi-agent model, such as MVC or PAC, because acceptability of 
formal methods is greatly influenced by using domain standard methods. 
The interactive system specifications must however stay in the boundaries of the B 
language constraints. We selected three kinds of constraints that relate to our purpose. 
These main constraints are: 
1. Modularity in the B language is obtained from the inclusion of abstract machine 

instances –via the INCLUDES clause– and, according to the language semantics, all 
these inclusions must form a tree. 

2. The substitutions used in the operations of abstract machines are achieved in 
parallel. So, two substitutions –or operations– used in the same operation cannot 
rely on the side-effects of each other. So, they are not allowed on the abstract 
machines specifications. 

3. Interface with the external world, i.e. the user actions as well as the updates of 
system state must be enclosed in the set of operations of a single abstract 
machine. 

3.2 Classical Multi-agent Architecture Models 

As we explained in the upper section, our first impulse was to apply directly a 
classical multi-agent approach to our problem. Nevertheless, we discovered rapidly 
that none of them could be used without modification. In this section, we briefly 
describe MVC and PAC architecture models and relate how they are inappropriate. 

MVC is an acronym for “Model, View, Controller”. It is the default architecture 
model for the Smalltalk language [21], and became the first agent-based model for 
HCI. This model splits the responsibility for user interface into autonomous agents 
that communicate by messages, and are divided into three functional perspectives: 
Model stands for application data, and their access. It is the only object that is allowed 
to communicate with other Model objects. View is in charge of graphical outputs. It 
gives the external representation of the domain data, using Model objects services to 
extract the data to be presented. It also presents the perceivable behavior of the agent. 
This separation between Model and View allows a Model to own several Views. 
Lastly, Controller is responsible for inputs, and for making perceivable the behavior 
of the agent. It also manages the interactions with the other Controllers. 

When the user gives some input, the associated Controller triggers a Model 
function. Then, the Model sends a message to all its Views to inform them for a 
change. Each View may request for the new state of the Model, and can refresh the 
graphical representation if needed. 

The main problem with MVC is the double link between the View and the Model. 
This point violates the first rule we identified, which concerns B abstract machine 
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inclusion order. More precisely, the Model cannot access the View –for sending it a 
message– if the View must ask the Model for data to be visualized. 

 

User

Controller View

Model

 

Fig. 1. The three components of the Model-View-Controller software architecture model 

The PAC model, for “Presentation, Abstraction, Control” was proposed in 1987 by 
J. Coutaz [22]. Opposed to MVC, it is absolutely independent from languages. Agents 
are made of facets, which express complementary and strongly coupled computational 
services. The Presentation facet gives the perceivable input and output behavior of 
the object. The Abstraction facet stands for the functional core of the object. As the 
application itself is a PAC agent, no more component represents the functional core. 
There is no application interface component. The Control facet insures coherency 
between Presentation and Abstraction. It solves conflicts, synchronizes the facets, and 
refreshes the states. It is also takes charge of communication with other agents –their 
Control facets. Lastly, it controls the formalism transformations between abstract and 
concrete representations of data. 

The PAC model gives another dimension as interactive objects are organized in 
hierarchies. Communication among the Control facets in the hierarchy is precisely 
defined. Modification to an object may lead its Control facet to signal this 
modification to the Control facet of parent object, which may in turn communicate 
this modification to its siblings. This allows all the parts of the application to correctly 
refresh. We believe that this precise point –i.e. the honesty property– may be directly 
addressed in a B development. It is the basis for the refinement steps we intend to 
conduct. 

 

Presentation Abstraction
User

Control

Other PAC agents
 

Fig. 2. The three facets of the Presentation-Abstraction-Control software architecture model 
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PAC solves the problem of MVC, because the Control facet is the only responsible 
for synchronizing the other two facets. Unfortunately, PAC does not respect the third 
rule on a unique entry point. In classical interactive systems, the unique entry point is 
the user. So, the Presentation facet may be considered as the unique entry point of the 
program. But, in safety critical systems, the reactive system itself is another external 
entity that must be taken into account. For that purpose, the presentation facet does 
not seem to be a good candidate. 

3.3 The Hybrid CAV Model (Control-Abstraction-View) 

We propose an hybrid model from MVC and PAC to solve this problem. The model 
uses the external strategy of MVC: the outputs of the system are devoted to a specific 
abstract machine –the View– while inputs are concerned by another one –the Control– 
that also manages symmetrical inputs from the reactive system which is directed by 
the third abstract machine –the Abstraction. The Control machine synchronizes and 
activates both View and Abstraction machines in response to both user and aircraft 
events, though assuming its role of control. 

To limit exchanges between control and the two other components, a direct link is 
established between the View and the Abstraction, to allow the former to extract data 
from the latter. This point is particularly important in the B implementation of this 
model, because of the second rule we mentioned upper, that enforces to pay particular 
attention to synchronization problems between machines. This last point is mainly 
discussed in the following section. 
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Fig. 3. The three components of the Control-Abstraction-View software architecture model 

4 The FADEC User Interface Specification in B 

In this section, we detail the development process we used for the case study, and we 
focus on HCI requirement satisfaction. The first step consists in modeling the 
FADEC, using the CAV architecture model we described in the previous section. The 



Interactive System Safety and Usability Enforced with the Development Process      47 

second step concentrates on safety requirements, that concerns inputs. The third step 
pays attention to honesty property, mainly outputs. Lastly, we illustrate the expressive 
power of the B method with iterative resolution of side effects on our specification. 

Two kinds of requirements must be fulfilled: 
• The system must be safe, i.e. the pilot must not be able to damage the engine. For 

example, the fuel pressure must be normal in order to begin the startup sequence. 
• The system must be honest, i.e. the user interface lights must reflect the exact 

engine parameters –pressure and temperature– at any moment. 

4.1 Modeling the FADEC User Interface 

Applying our architecture model to the FADEC case study is straightforward. Each B 
machine encapsulates few attributes. 

The Engine abstract machine –the Abstraction– models the functional core of the 
FADEC, e.g. the engine control parameters in the VARIABLE clause, and the 
variation sets of them in the SETS and INVARIANT clauses. The SETS are defined 
in respect to the logical description of the system, and a unique “SetProbeData” is 
defined for both the fuel prestsure and the engine temperature: 

MACHINE 
 Engine 
SETS 
 SetIgnition = {off, start, run} ; 
 SetFuelValve = {open, closed} ; 
 SetProbeData = {low, normal, high}  
VARIABLES 
 Ignition , FuelValve , FuelPress , EngineTemp    
INVARIANT 
 Ignition ∈  SetIgnition ∧  
 FuelValve ∈  SetFuelValve ∧  
 FuelPress ∈  SetProbeData ∧  
 EngineTemp ∈  SetProbeData ∧ ...  

The View abstract machine models what the pilot can perceive from the user 
interface, e.g. the lights and their status (TRUE for on, and FALSE for off). Because 
of the dark cockpit philosophy, we chose to use two lights for reflecting either 
ignition state, pressure or temperature that have three different states, and only one for 
fuel valve status which has only two different states. Moreover, the View abstract 
machine uses an instance of the Engine abstract machine in order to be aware of its 
sets of variables. It is expressed by a USES clause: 

MACHINE 
 View 
USES 
 engine.Engine 
VARIABLES 
 IgnitionOff, IgnitionStart, FuelValveClosed, 
 EngineTempLow, EngineTempHigh, FuelPressLow, FuelPressHigh, 
 StartButtonEnabled 
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INVARIANT 
 IgnitionOff, IgnitionStart ∈  BOOL×BOOL ∧  
 FuelValveClosed ∈  BOOL ∧  
 EngineTempLow, EngineTempHigh ∈  BOOL×BOOL ∧  
 FuelPressLow, FuelPressHigh ∈  BOOL×BOOL ∧  
 StartButtonEnabled ∈  BOOL ∧ ... 

The Control abstract machine is the centralized control of the system. So, it does 
not need to define any functional core nor presentation variables which are already 
defined in the Engine and View abstract machines respectively. On the other hand, it 
must include the sets, the variables and the operations of both instances of Engine and 
View: 

MACHINE 
 Control 

INCLUDES 
 engine.Engine, view.View 

The sets, the variables and some of the invariants of the three abstract machines are 
now precisely defined. We can focus on the INVARIANT clauses that ensure safety. 

4.2 Safety Requirements 

The first requirement of the FADEC is safety. For instance, the start mode must not 
be used if the fuel pressure is not normal. This property must always be satisfied. In 
B, this requirement may be enforced with an INVARIANT clause that applies on the 
variables Ignition and FuelPress. The Engine abstract machine which represents the 
system functional core is responsible for it, with the following B expression: 

¬  (Ignition = start ∧  FuelPress ≠ normal) 

We do not pay attention to what action is done. We only focus on the fact that 
never abnormal fuel pressure may be observed when startup is processing. In the 
semantics of B, the invariant must equal true at the initialization of the abstract 
machine, at the beginning and at the end of any operation. Note that the substitutions 
of the initialization as well as the operations are assumed to be executed in parallel. 

Of course, the startup operation of the engine must satisfy this invariant, so the 
operation is guarded by an ad-hoc precondition PRE that ensures the operation will 
never be used if the fuel pressure is different from normal: 

startup = 
 PRE FuelPress = normal 
 THEN Ignition := start 
 END ; 

For HCI, what is interesting now is: Is the user able to make an error? Whatever 
the user does, the B specification of the engine machine ensures that it will not be 
possible to violate the invariant. What about user actions and user interface state now? 
In our architecture model, the Control abstract machine is responsible for user inputs 
and for functional core actions activation. As a consequence, it must include an 
instance of the Engine abstract machine, and must use its operations within their 
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specifications. Using B allows propagating the conditions. A new guard can/must be 
set for the operation used when the pilot presses the startup button. We do not give the 
engine the responsibility for controls, we propagate this semantic control to the user 
interface. One basic solution is to guard the activation of the startup button in the 
Control abstract machine by the precondition engine.FuelPress = normal: 

start_button_pressed = 
 PRE engine.FuelPress = normal 
 THEN engine.startup || 
  … 
 END ; 

This basic solution suffers from two main drawbacks: 
• The redundancy of preconditions is needed by modular decomposition of the B 

abstract machines 
• The pilot’s action on the system is blocked without proactive feedback, i.e. the 

pilot can press the startup button and nothing happens. 
A more clever design is to delegate the safety requirements of the functional core 

to the user interface. In this new design, the user interface startup button is disabled 
while the startup sequence cannot be initiated for safety reasons. Now the user 
interface is in charge with the safety requirements of the system. Two modifications 
are needed: 
• The startup operation of the Control abstract machine is now guarded by the state 

of the startup button: 

 view.StartButtonEnabled = TRUE 

• The invariant must ensure that the startup button is disabled when the fuel pressure 
is not normal and enabled otherwise: 

 ( (engine.FuelPress = normal ∧  view.StartButtonEnabled = TRUE) ∨  
 (engine.FuelPress ≠ normal ∧  view.StartButtonEnabled = FALSE) ) 

The B semantics –and the Atelier B tool– checks for the validity of these 
assertions, and ensures for the compatibility of all abstract machines operations. Our 
software is now assumed not to allow the pilot doing anything wrong that can damage 
the turbojet engine. 

4.3 Usability Requirements 

Honesty is a well known property in user interfaces [23]. In safety critical systems, 
system honesty is crucial because user actions depend on the user capacity to evaluate 
the state of the system correctly. This point assumes the displayed state is the state of 
the actual system. Ensuring user interface honesty requires the specification to prove 
that the system state –represented by Engine variables– is always reflected in the pilot 
interface –represented by View variables. Like safety requirements, this requirement 
stands for an always true invariant. 

It seems conspicuous that the honesty property must be stipulated in the INVARIANT 
clause of the View abstract machine. However, updates of the Engine and View 
variables are achieved in parallel by the operations of the Control abstract machine, 
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because of the B semantics constraints –quoted in the §3.1. As a result, it is 
impossible to get the Engine variables update before the View variables update. As a 
consequence, the honesty property must be stipulated in the INVARIANT clause of the 
Control abstract machine only. For example, the light FuelValveClosed must be on 
only when the fuel valve is closed. We can express it by an exhaustive invariant that 
gives the two right solutions: 

 ( (engine.FuelValve = closed ∧  view.FuelValveClosed = TRUE) ∨  
 (engine.FuelValve ≠ closed ∧  view.FuelValveClosed = FALSE) ) 

Our software architecture model assumes that the Control abstract machine really 
acts. So, the operation of the Control abstract machine, which is used when the pilot 
presses the close button, i.e. the close_fuel_button_pressed action, must update both 
the Engine state and the View state: 

close_fuel_button_pressed = 
 BEGIN 
  engine.close_fuel || 
  view.update_ui( engine.Ignition, closed, 
    engine.FuelPress, engine.EngineTemp, 
    view.StartButtonEnabled ) 
 END ; 

Another consequence is that the operation of the View abstract machine must 
properly update the variable: 

update_ui (ignition, fuel_valve, fuel_press, engine_temp, start_button_enabled) = 
 PRE 
  ignition ∈  SetIgnition ∧  
  fuel_valve ∈  SetFuelValve ∧  
  engine_temp ∈  SetProbeData ∧  
  fuel_press ∈  SetProbeData ∧  
  start_button_enabled ∈  BOOL 
 THEN 
  ANY fvc WHERE 
   fvc ∈  BOOL ∧  
   ( (fuel_valve = closed) ⇒  (fvc = TRUE) ) ∧  
   ( (fuel_valve ≠ closed) ⇒  (fvc = FALSE) ) 
  THEN 
   FuelValveClosed := fvc 
  END || ... 
 END 

4.4 Specificity of Asynchronous Systems 

In critical systems such as the FADEC, some parts of the system change without any 
interaction with the user. For example, a probe whose control is obviously outside of 
the system updates the fuel pressure. A real-time kernel is in charge of interrogating 
every probe and sending responses to the whole system. In our analysis, the real-time 
kernel is out of our scope. Nevertheless, its entry point into our system must be 
defined. We propose to manage the aircraft in a way that is symmetric to the user. As 
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stated in figure 1, it is controlled by the Engine abstract machine. When events are 
initiated by the aircraft power plant, their entry point is the Control abstract machine. 
So doing, the Control is completely in charge of updating the internal state –
functional core– and the external state of the application –view. More, it can also 
ensure that the state of interaction is also correct. 

Because we were focusing on HCI, we did not really pay attention to this side of 
the application. In our sense, one of the most interesting result of our study is the 
following: the B method helped us to discover a hazardous but important side-effect. 
The automatic prover detected a problem with fuel pressure invariant as soon as we 
introduced the action that updates this pressure into the functional core: on the one 
hand, the fuel pressure must be normal during the startup sequence, otherwise, the 
pilot cannot press the start button. On the other hand, if the fuel pressure falls down 
when the Engine abstract machine is in start mode, the turbojet engine must stop. We 
did not take this case into account. Fortunately, the B semantics does not allow this. 
Therefore, the Engine abstract machine must be enhanced: 

update_fuel_press (fuel_data) = 
 PRE fuel_data ∈  SetProbeData 
 THEN 
  FuelPress := fuel_data || 
  SELECT Ignition = start ∧  fuel_data ≠ normal 
  THEN Ignition := off  
  END 
 END ; 

As a result, the Control abstract machine must update the View accordingly: 

fuel_press_event (data) = 
 PRE data ∈  SetProbeData  
 THEN 
  SELECT engine.Ignition = start ∧  data ≠ normal THEN 
   engine.update_fuel_press (data) || 
   view.update_ui( off, engine.FuelValve, 
     data, engine.EngineTemp, 
     FALSE ) 
  ELSE 
   engine.update_fuel_press (data) || 
   view.update_ui( engine.Ignition, engine.FuelValve, 
     data, engine.EngineTemp, 
     TRUE ) 
  END 
 END ; 

5 Conclusion 

A previous work [13, 14] show that the B language can be used to specify WIMP 
interactive systems and ensure usability properties. This work shows that the B 
method can enforce safety and usability in a process-control interactive system with 
asynchronous behavior. Moreover, this study covers specification and design topics: 
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we define a new software architecture model, that allows an actual instantiation with 
the B method, and we describe an empiric method for modeling safety-critical 
interactive systems in B. Four points may be enlightened: 
− safety and usability are ensured by using invariant that are relatively easy to find 

from the non formal description of the system behavior, 
− incremental development can be achieved with this method, which is particularly 

suitable in HCI domain, 
− using the B tool is very helpful for ensuring specification completeness, as we 

discovered during our analysis, 
− the modules and then the whole specification may be completely validated thanks 

to the prover, in a whole automated way. 
At the end of the last step, the specification must be considered as safe respect with 

to the requirements –safety and usability. 
This work is a second step towards a real method for specifying, designing and 

implementing interactive systems with the B method. The perspectives are numerous. 
First, we need to use the B refinement theory to implement the specifications we 
realized. This step, which has already been initiated, will lead us to pay a particular 
attention to the connections with user interface toolkits. Then, a more exhaustive 
study must be accomplished to evaluate what properties may be enforced using the B 
language, and what properties cannot. This will then allow us to design a safety 
critical system with the collaboration of a set formal methods to avoid limitations 
among each methods. 
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Discussion 

J. Williams: An observation: your manner of modeling seems similar to Jose Campos 
at The university of York. He uses a combination of theorem proving and model 
checking. 
F. Jambon: The use of B offers a highly automated approach to verification. The 
approach taken by Campos will be investigated further. 
 
J. Roth: Seems to need a lot of specification for even a simple user interface.  
F. Jambon: Full specification for example system from the paper is six pages. We 
need to choose between simplicity of expression and reasoning power; here we err on 
the side of reasoning power. However, some real systems have been successfully 
specified in B including the Paris Metro control system. In addition, the verified 
design has proven safety properties. 
 
P. Van Roy: In the specification you have an abstraction of the engine. How do you 
ensure correspondence between the abstraction and the engine itself? 
F. Jambon: That is the subject of another talk. Briefly, there is an interface between 
the secure verified code and the insecure elements not coded in B. One approach is to 
have a state machine at either end of each engine operation. This is unverified code so 
it can't be effectively reasoned about and we test it instead. 

 
N. Graham: Your CAV architecture looks similar to some very early architectures for 
interactive systems, having inputs trigger outputs directly. Is the design of the 
architecture motivated by the idea that this is appropriate to the problem domain, or to 
make it easy or possible to model the system using B? 
F. Jambon: It was forced on us by the B theorem prover. The architecture is 
problematic because the control component tends to acquire all the functionality of a 
PAC control and an MVC control so it's quite large. However the one advantage of 
the architecture is that it is fully symmetrical. 
 
L. Bass: The only way the control passes information to the user is through the 
aircraft? Can the abstraction communicate directly with the user? 
F. Jambon: This is forced on us by the B modeling notation. It limits the kind of 
systems we can model but gives us provable safety. 
 
L. Bass: If you replace the airplane with a database for example this model wouldn't 
work, would it? 
F. Jambon: No, not unless the database actively provided status updates. There's an 
inherent assumption that the abstraction is dynamic. 
 
J. Coutaz: It appears we could have an input component between the user and the 
control and a functional core adapter between the plane and the control, then you'd 
have sort of a "micro-arch". 
F. Jambon: Yes, there are multiple interfaces so it sort of looks like that. 
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S. Chatty: What does the 'uses' line between the view and the abstraction mean, 
exactly? 
F. Jambon: Visibility of data types. 
 
S. Chatty: What is the flow of information? 
F. Jambon: None --- the view cannot read the abstraction. This would introduce a 
situation that the theorem prover could not deal with because of the parallelism in the 
system. All dynamic information goes through the control. 
 
H. Stiegler: The command and status arrows are not part of the model? Or are they? 
F. Jambon: The arrows are not part of the formal model at the specification level 
because they represent non-formal components of the system about which we cannot 
reason rigorously. 
 
H. Stiegler: But wouldn't they break the hierarchy of your formal model? 
F. Jambon: Yes, if we included them. 
 
P. Van Roy: If there really is a cyclic dependency in the system, can this be modeled 
in B? This seems a serious limitation in real life, since many (most?) systems seem to 
end up with cycles at run time. 
F. Jambon: B does not allow this is there is no way to rigorously prove that a cycle 
would not bottom out at run time. Also, B cannot prove temporal behaviour, just state 
evolution. Temporal reasoning is required to address this problem and B does not 
provide this. 
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