Skip to main content

Minimum-Cost Reachability for Priced Time Automata

  • Conference paper
  • First Online:
Hybrid Systems: Computation and Control (HSCC 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2034))

Included in the following conference series:

Abstract

This paper introduces the model of linearly priced timed automata as an extension of timed automata, with prices on both transitions and locations. For this model we consider the minimum-cost reachability problem: i.e. given a linearly priced timed automaton and a target state, determine the minimum cost of executions from the initial state to the target state. This problem generalizes the minimum-time reachability problem for ordinary timed automata. We prove decidability of this problem by offering an algorithmic solution, which is based on a combination of branch-and-bound techniques and a new notion of priced regions. The latter allows symbolic representation and manipulation of reachable states together with the cost of reaching them.

This work is partially supported by the European Community Esprit-LTR Project 26270 VHS (Verification of Hybrid Systems).

Research supported by Netherlands Organization for Scientific Research (NWO) under contract SION 612-14-004.

Research partly sponsored by the AIT-WOODDES Project No IST-1999-10069.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parosh Aziz Abdulla and Aletta Nylén. Better is better than well: On efficient verification of infinite-state systems. In Proc. of the 14th IEEE Symp. on Logic in Computer Science. IEEE, 2000.

    Google Scholar 

  2. R. Alur, C. Courcoubetis, and T. A. Henzinger. Computing accumulated delays in real-time systems. In Proc. of the 5th Int. Conf. on Computer Aided Verification, number 697 in Lecture Notes in Computer Science, pages 181–193, 1993.

    Google Scholar 

  3. R. Alur and D. Dill. Automata for Modelling Real-Time Systems. Theoretical Computer Science, 126(2):183–236, April 1994.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata. In Hybrid Systems: Computation and Control, number 1569 in Lecture Notes in Computer Science, pages 19–30. Springer-Verlag, March 1999.

    Chapter  Google Scholar 

  5. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Larsen, Paul Pettersson, and Judi Romijn. Efficient guiding towards cost-optimality in uppaal. Accepted for TACAS 2001.

    Google Scholar 

  6. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Larsen, Paul Pettersson, Judi Romijn, and Frits Vaandrager. Minimum-cost reachability for priced timed automata. Technical Report RS-01-03, BRICS, January 2001.

    Google Scholar 

  7. Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. Kronos: A Model-Checking Tool for Real-Time Systems. In Proc. of the 10th Int. Conf. on Computer Aided Verification, number 1427 in Lecture Notes in Computer Science, pages 546–550. Springer-Verlag, 1998.

    Chapter  Google Scholar 

  8. David Dill. Timing Assumptions and Verification of Finite-State Concurrent Systems. In J. Sifakis, editor, Proc. of Automatic Verification Methods for Finite State Systems, number 407 in Lecture Notes in Computer Science, pages 197–212. Springer-Verlag, 1989.

    Google Scholar 

  9. Ansgar Fehnker. Scheduling a steel plant with timed automata. In Proceedings of the 6th International Conference on Real-Time Computing Systems and Applications (RTCSA99), pages 280–286. IEEE Computer Society, 1999.

    Google Scholar 

  10. T. A. Henzinger. The theory of hybrid automata. In Proc. of 11th Annual Symp. on Logic in Computer Science (LICS 96), pages 278–292. IEEE Computer Society Press, 1996.

    Google Scholar 

  11. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A Model Checker for Hybird Systems. In Orna Grumberg, editor, Proc. of the 9th Int. Conf. on Computer Aided Verification, number 1254 in Lecture Notes in Computer Science, pages 460–463. Springer-Verlag, 1997.

    Google Scholar 

  12. G. Higman. Ordering by divisibility in abstract algebras. Proc. of the London Math. Soc., 2:326–336, 1952.

    Article  MATH  MathSciNet  Google Scholar 

  13. Thomas Hune, Kim G. Larsen, and Paul Pettersson. Guided Synthesis of Control Programs Using Uppaal. In Ten H. Lai, editor, Proc. of the IEEE ICDCS International Workshop on Distributed Systems Verification and Validation, pages E15–E22. IEEE Computer Society Press, April 2000.

    Google Scholar 

  14. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal on Software Tools for Technology Transfer, 1(1-2):134–152, October 1997.

    Article  MATH  Google Scholar 

  15. Kim G. Larsen, Carsten Weise, Wang Yi, and Justin Pearson. Clock difference diagrams. Nordic Journal of Computing, 6(3):271–298, 1999.

    MATH  MathSciNet  Google Scholar 

  16. J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference decision diagrams. Technical Report IT-TR-1999-023, Department of Information Technology, Technical University of Denmark, February 1999.

    Google Scholar 

  17. Peter Niebert, Stavros Tripakis, and Sergio Yovine. Minimum-time reachability for timed automata. In IEEE Mediteranean Control Conference, 2000.

    Google Scholar 

  18. Peter Niebert and Sergio Yovine. Computing optimal operation schemes for multi batch operation of chemical plants. VHS deliverable, May 1999. Draft.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Behrmann, G. et al. (2001). Minimum-Cost Reachability for Priced Time Automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds) Hybrid Systems: Computation and Control. HSCC 2001. Lecture Notes in Computer Science, vol 2034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45351-2_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-45351-2_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41866-5

  • Online ISBN: 978-3-540-45351-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics