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Abstract. A multiple model based observer/estimator for the estima-
tion of parameters is used to reset the parameter estimation in a con-
ventional Lyapunov based nonlinear adaptive controller. The advantage
of combining both approaches is that the performance of the controller
with respect to disturbances can be considerably improved while a re-
duced controller gain will increase the robustness of the approach with
respect to noise and unmodeled dynamics. Several alternative resetting
criteria are developed based on a control Lyapunov function.

1 Introduction

The use of multiple models to switch or reset parameter estimators has been
proposed in order to speed up the convergence rate of certainty equivalence
adaptive control of linear systems [1{8].

In this paper we present a hybrid approach to speed up transients in con-
tinuous Lyapunov based nonlinear adaptive control systems. Hereby, a multiple
model observer (MMO) is used to reset the parameter estimation in a nonlin-
ear adaptive controller. The advantage of combining both approaches is that
transients due to adaptation can be damped out while the performance of the
controller with respect to disturbances can be improved. As a consequence the
gain of the continuous adaptive controller can be considerably lowered thus, in-
creasing the robustness of the approach with respect to noise and unmodeled
dynamics. The parameter resetting is based on a Control Lyapunov function
and can guarantee asymptotic stability. The main contributions of the paper are

{ an extension of multiple model based adaptive control to the class of para-
metric strict feedback nonlinear systems,

{ the formulation of a set of suÆcient closed loop stability conditions for re-
setting tuning function based nonlinear adaptive controllers,

{ the introduction of a fast multiple model observer, from which even under
transient conditions an accurate parameter estimate can be obtained.

The paper is organised as follows: In Section 2 some results of constructive
nonlinear adaptive control are brie
y reviewed and a motivation for discontin-
uous parameter resetting is given. This is followed by an analysis of the closed



loop stability implications of resetting parameter estimates (Section 3) where a
�rst order and a second order example are used to illustrate the results. Sec-
tion 4 describes the concept of multiple model observers and gives for a special
plant structure suÆcient conditions for stability of parameter resetting. At the
end discussions of a �rst order system as an application of the method and some
simulation results are given.

2 Nonlinear Adaptive Backstepping

Consider the adaptive tracking problem for a parametric strict-feedback sys-
tem [9]

_x1 = x2 + '1(x1)
T � (1)

...

_xn�1 = xn + 'n�1(x1; x2; : : : ; xn�1)
T �

_xn = �(x)u+ 'n(x)
T �

y = x1

where � 2 Rp is a vector of unknown constant parameters, � and F = ['1; : : : ; 'n]
are smooth nonlinear functions taking arguments in Rn . It has been shown that
in a tuning function adaptive controller for such a system the adaptive control
law and the parameter update law take the following form
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where yr is the reference signal to be tracked by the output y
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The control law and the tuning functions are given recursively by
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where �xi = (x1; : : : ; xi), �0 = 0, �0 = 0, ci > 0. The control law together with
the parameter update law render the time derivative of the Lyapunov function
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1

2
zT z +

1

2
~�T��1~� with ~� = � � �̂ (10)

negative semide�nite along trajectories of the closed loop system:
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Our main objective is to improve the transient performance of the closed loop
system, in particular with respect to the unknown parameter vector � which is
assumed to be constant with respect to time.

It is a well known fact that for this adaptive control schemes the transient
performance can be improved by increasing any of the design parameters ci,
�i and � . The higher the gain the faster the transient response of the control
systems. In practical applications however, high gain should be avoided as there
are always unmodelled dynamics or even time delays (related to computer im-
plementation) in the system which may lead to instability if the loop gain is too
high. Thus, other strategies of counteracting uncertainties are highly desirable.

Such a strategy is provided by the multiple model switching and tuning
approach, where the estimates are taken from a �nite set

�i; i = 1; : : : ; N:

The multiple model observer provides additional information on parameter un-
certainies which can then be used to instanteneously reset the parameter esti-
mate �̂. Suppose the best estimate of the multiple model observer with respect
to prediction performance is

�̂+ = �̂j :

Then a decision has to be made whether or not to use this additional information.
In the case when the multiple model estimate is used the current continuous
estimate �̂� will be discarded and the continuous update law reset to the new
value. This resetting decision should not be based on the modelling performance
alone. It should also be guaranteed that the control performance and in particular
the transient behaviour is improved via resetting.

In between the resetting events the parameter estimate will still be governed
by the adaptation law and it will thus be piecewise continuous. This will result
in discontinuous control and adaptation laws. Since the state transformation in
Eq. (5) is parameterised by �̂ the states z2; : : : ; zn will be discontinuous in time.

In the remainder of the paper the implications of such a resetting strategy
will be studied.



3 Stability analysis of parameter resetting

3.1 SuÆcient conditions for stability

Stability results for discontinuous Lyapunov functions exist, e.g. [10]. For stabil-
ity it is suÆcient that

1. V (x) be continuous with respect to its arguments
2. V (x) is non-increasing along trajectories in between switching events,
3. V (x+) � V (x�) whenever there is a jump from x� = limt#t� x(t) to x+ =

limt"t� x(t) at some time instant t�.

Consider the Lyapunov function (10) of the tuning function approach

Vn(z; �; �̂) =
1

2
zT z +

1

2
~�T��1~� with ~� = � � �̂: (12)

For the tuning function approach it can be easily shown that properties 1 and 2
hold due to the stability of the closed loop system when no resetting is applied.
When the parameter estimate �̂ is reset, the state variable z depending on �̂
changes discontinuously with time. Then, to obtain a suÆcient condition for
stability it remains to be analysed whether

�Vn = Vn(z(�̂
+); �; �̂+)� Vn(z(�̂

�); �; �̂�) � 0 (13)

holds. If this is the case then a resetting of �̂ from �̂� to �̂+ is admissible. In
general the state vector z will depend on �̂ in a nonlinear way. In order to develop
some stability criteria the following assumption may be made (it will be shown
in later sections how this can be replaced by other assumptions):

Assumption 3.1. Set the step change in parameter

��̂ = �̂+ � �̂�: (14)
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for all ��̂ 2 D � R
p .

Under assumption 3.1 the following bound on the step change of the Lyapunov
function (10) can be given:
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~�� = � � �̂�

For positive de�niteMTM+��1 > 0 the suÆcient condition for stability�Vn �
0 is satis�ed inside the hyper-ellipse

2
h
MT z� � ��1~��

iT
��̂ +��̂T

�
MTM + ��1

�
��̂ = 0 (18)

It can be easily veri�ed that even in the case when �̂ steps from �̂� to the
correct parameter value �̂+ = � the condition for stability is not necessarily
satis�ed because in this case the requirement would be:

2(z�)TM ~�� + (~��)T (MTM � ��1)~�� � 0: (19)

It has been shown above that the set of admissible parameter changes ��
depends on the state z and on the parameter error ~�. While z� and z+ can be
computed, additional information on the estimation error is necessary to check
the admissibility of ��. In the remainder of the paper two ways of obtaining the
required knowledge of � will be presented. The �rst approach is by exploiting
properties of the closed loop system while the second approach uses additional
information supplied by an multiple observer.

3.2 Reference trajectory resetting

The condition (13) on �V can be considerably simpli�ed when resetting of the
reference trajectory yr is used in combination with the parameter resetting.

Reference trajectory resetting can be applied most easily in the case where yr
and its derivative are generated by a linear reference model which is driven by
some external reference input signal r(t). For the following calculations we as-
sume the existence of a reference model since the states of such a system can
be reset directly. In the other case where yr and its derivatives are generated
externally the reset is accomplished by modi�cation of the reference signal us-
ing the output Æ; Æ(1); : : : ; Æ(n�1) of an additional linear asymptotically stable

autonomous system y
(i)
rmod = y

(i)
r + Æ(i).

Reference trajectory initialisation is originally a tool for improving the tran-
sients in adaptive tuning function control systems [9]. In fact, by resetting the n

values yr(t
+); _yr(t

+); : : : ; y
(n�1)
r (t+) an additional degree of freedom is obtained

which enables us to set z+ = 0. From Eq. (5) it can be seen that z+ = 0 requires
the solution of set of equations

y(i�1)r (t+) = xi � �i�1(�x1; : : : ; xi�1; �̂
+; yr(t

+); : : : ; y(i�2)r (t+)); i = 1; : : : ; n
(20)

It can be shown [9] that the solution to these equations does not depend on the
controller parameters.



The step change in the Lyapunov function with reference trajectory resetting
is
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for which we can obtain a controller independent upper bound

�Vn � ��̂T��1��̂ � 2
�
~��
�T

��1��̂ (22)

When trajectory resetting is used, the Lipschitz assumption 3.1 (whereM might
be diÆcult to compute) is no longer required because z+ = 0 in Eq. (16).

3.3 Application to a �rst order system

Consider the tracking control of the �rst order system

_x1 = '1(x1)� + u (23)

An adaptive tuning function controller is simply

u = �'1(x1)�̂ � c1z1 � _yr (24)

_̂
� = 
z1'1(x1) = 
�1 (25)

z1 = x1 � yr

This controller based on the control Lyapunov function
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2
z21 +

1

2


�
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renders the derivative of the Lyapunov function negative semi-de�nite

_V = �c1z
2
1 � 0:

The closed loop system is given by

_z1 = �c1z1 + '1(x1)~� (27)

The time derivative of the squared error along the solution of (27) is

d

dt

�
1

2
z21

�
= z1 _z1 = �c1z

2
1 + z1'1(x1)~� (28)

For the rest of the discussion of the �rst order case we assume that '1(x1) > 0.
This assumption is not necessary for the approach in general but it simpli�es
the switching law considerably.



For the �rst order system (23) and the Lyapunov function (26) we obtain by
use of Eq. (16) the following suÆcient stability condition:
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This gives the following bounds on the step change in the parameter estimate:

sgn
�
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(30)�����̂��� � 2
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In general, condition (31) cannot be veri�ed without additional information

on the parameter estimate. However a switching law S(z1; ��̂) can be designed
such that condition (30) holds.

Using this switching law the parameter resetting law is constructed in the
following way

�̂ = �̂� +
�
�̂+ � �̂�

�
S(z1; ��̂) = �̂� +��̂ S(z1; ��̂) (32)

where S assumes the values 1 or 0 according to the following set of inequalities

S = 1 whenever

8<
:

z1 > "1 ^ ��̂ > "2
_

z1 < �"1 ^ ��̂ < �"2

S = 0 elsewhere (33)

Condition (32) states that resetting occurs whenever the magnitude of the
control error z1 exceeds some threshold and at the same time there is a signif-
icant discrepancy between continuous parameter estimate and multiple model
parameter estimate having the same sign as the control error.

Note that due to the assumption that ' is always positive we obtain from
the closed loop error equation (27):

_z1z1 > 0 implies sgn( _z1) = sgn(~�) (34)

Thus, provided that jz1j is increasing while it crosses the threshold "1 the sign
of _z1 is a direct indicator of the sign of the parameter error ~�. In the general case,
the sign of ' will be known and the resetting law can be modi�ed accordingly.

This leads us to the following theorem

Theorem 3.2. 1. Consider the �rst order system (23) together with the con-
tinuous control law (24) and the update law (25). Assuming '1(x1) > 0,


 > 0 and c1 > 0. If the parameter �̂ is reset under the condition

z1sgn( _z1) = "1
^

z1��̂ > "1"2; "1 > 0; "2 > 0 (35)

then, the sign condition (30) is satis�ed.



2. Provided the sign condition is satis�ed, then a decrease of V in Equation (26)
at the switching instant is obtained provided that�����̂��� < 2

���~����� (36)

holds. Thus a suÆcient condition for stability is satis�ed.
3. If to the contrary �����̂��� � 2

���~����� (37)

holds then the control error z1 is driven towards zero as long as jz1j > "1
despite of the increase in value of V .

Proof The �rst and second part of the Theorem has been proven above.
If the assumptions of the third part of the theorem hold then, outside jz1j > "1

we have along the solutions of the closed loop equation:

d
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2
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h
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i
� �c1z1 + jz1'1(x1)j

h���~������ �����̂���i < 0 (38)

due to (37) which implies that z1 is driven towards the origin.
As a remark, one might note, that case 3 of Theorem 3.2 implies stability but
possibly with reduced transient performance and chattering.

The negative jump in the Lyapunov function could be interpreted as im-
proved transient performance. This follows from the dependency of transient
performance of the tuning function approach on the initial conditions which has
been analysed in [9].

3.4 Application to a second order system

Consider the second order system with one parameter

_x1 = x2 + '(x1)�

_x2 = u: (39)

Designing the tuning function controller (2) for such a system requires one

backstep. Assuming that the parameter estimate �̂ can vary discontinuously with
time we will thus have also discontinuous changes with time in �1 and z2 and in
the corresponding Lyapunov function V = 1
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This corresponds with Assumption 3.1 and Eq. (15) where

z+ = z� +M��̂

M =

�
0

'1(x1)

�
; MTM = '21(x1):

The reset conditions discussed in sections 3.3 and 3.4 require the information
whether the states of z1 and z2 cross some threshold from above or below. No
explicit knowledge of the derivatives of the states is required. In case of noisy
state measurement multiple crossing of the threshold may occur, however, by
imposing an additional threshold on ��̂ a hysteresis is introduced and chattering
cannot occur.

4 Multiple Model Observer (MMO)

As explained above a multiple observer approach can be used to avoid large
transient errors in continuous adaptive control. Quite similar to the multiple
model estimation described in [2{4, 7], the idea is to construct a �nite set of
parallel observers each of which is designed for a �xed parameter value. In its
simplest form the MMO constists of a set O of N individual observers oi each
parameterised with a �xed parameter value �i. All N observer cover the range of
admissible parameter values. Figure (1) shows the structure of a multi-observer
parameter estimation. Each of the N observer estimates the states of the system
and is driven by the residual e1i = x1 � x̂1i. Since any mismatch between a
single observer and the physical system will in general lead to a steady-state
estimation error, this error can be used to determine the best observer for the
actual system.

Using discontinuous output injection functions is common in sliding mode
observers [11]. A hybrid observer using convergence information to switch be-
tween several discontinuous output injection functions for nonlinear systems has
been reported in [12]. Here, we propose instead to use a set of observers with
�xed output injection functions which can have considerably faster transients.

A performance index Qi(x̂i; y) is de�ned for each observer of the set O. The
performance index weighs the output error of the observer, thus quanti�es the
mismatch between the plant and the individual observer. A switching logic L
is used to determine the estimate �i of the multi-observer O. L satis�es two
purposes:

1. selecting the coeÆcient �i corresponding to the observer oi with the best
performance.

2. providing a mechanism that ensures a convergence of the estimator after a
�nite number of switches.

In order to prevent chattering, two di�erent approaches have been suggested
in literature
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Fig. 1. Multiple model observer parameter estimation

{ Dwell time switching [5] where after each switch for a certain period of time
switching is prohibited.

{ Hysteresis switching [1, 13]: Let op be the valid observer at time t� then a
switch to a new observer oi occurs only if Qi(t

+) (1 + h) < Qp(t
+) where

Qp(t
+) is the current performance of the observer op and h > 0 is the

hysteresis. Otherwise no switching will occur and op will remain valid.

4.1 Construction of the individual observers in the �rst order case

Consider the system (23) where the parameter � is treated as an augmented
state

_x1 = '1(y)� + u
_� = 0

y = x1 (41)

It is assumed that '1(y) > 0 and that the parameter � is contained in a closed
interval [�min; �max]. The interval is discretised using a set of N parameter val-
ues �min < �1 < �2 < : : : < �N < �max. Each of the N individual observers of the
multiple model observer will be centered around one of the discrete parameter
values �i. For this purpose Eq. (41) is rewritten into

_x1 = '1(y)�i + '1(y)x2i + u

_x2i = 0 (42)



where x2i = � � �i. Following the Lyapunov based observer design in [14] we
propose to use the following individual nonlinear observer

_̂x1i = '1(y)�i + 2!'1(y)(y � x̂1i) + u+ '1(y)x̂2i
_̂x2i = !2'1(y)(y � x̂1i); ! > 0: (43)

De�ning the error ei = [e1i; e2i]
T = [y � x̂1i; x2i � x̂2i]

T
the observer will result

in the bilinear error dynamics

_ei = '(y)

�
�2! 1
�!2 0

�
| {z }

A

ei: (44)

where the matrix A is Hurwitz and '(y) represents the nonlinearity in the system
output. The observer design renders the derivative of the Lyapunov function

Vi(ei) =
1

2
eTi

�
1 0
0 !�2

�
ei (45)

negative de�nite _Vi = �2!'(y)e21i < 0.
An important property of the error di�erential equation (44) is that its so-

lution can be explicitly given. Knowing the measurable output error e1i(t � T )
and e1i(t) at some time instant t the parameter estimation error

e2i(t) =
1

y�

h
(1 + !y�) e1i(t)� e�!y

�

e1i(t� T )
i

(46)

can be determined, where y�(t� T; t) =
R t
t�T

'1(y(�))d� > 0. Thus, even under
observer transients a parameter estimate

�̂i = �i + x̂2i(t) + e2i(t) (47)

can be computed.
Anti-windup is introduced for the observer state x̂2i by de�ning the local

bounds ��i. The state equation _̂x2i is set to zero if x̂2i + �i =2
�
��i�1; ��i

�
and

(y � x̂1i)x̂2i > 0. Hence, only one individual observer will have an output error
converging to zero and consequently a cost index Qi converging to zero indepen-
dently of the particular cost index that is used.

The properties of the MMO can be used to derive the following resetting law:

Theorem 4.1. Consider the control system (23) together with the control law (24),
the parameter update law (25) and the MMO (43). Suppose that oi is the observer

that has been selected according to the cost index. Then, setting �̂+ = �i will re-
sult in a negative step of the Lyapunov function (26) if

1. x2i(�) does not saturate within the time intervall � 2 [t� T; t].

2. ��i�1 < �̂i < ��i.
3. either (a) �̂� � ��i > ��i � �i or (b) ��i�1 � �̂� > �i � ��i�1.



Proof If condition 1 of the theorem holds, according to Eqs. (46) and (47) we
have

�̂i = �i + x̂2i(t) + e2i(y
�(t; t� T ); e1i(t); e1i(t� T )): (48)

If in addition to this, condition 2 is satis�ed, then it can be implied that the real
parameter is contained in

��i�1 < � < ��i: (49)

From condition 3 it follows that either 3a is satis�ed in which case we obtain by
adding �̂ to both sides, rearranging and employing (49)

���̂ = �̂� � �i < 2(�̂ � ��i) � 2(�̂� � �) = �2~�� (50)

If on the other hand 3b is satis�ed then by subtracting �̂ from both sides and
employing (49)

��̂ = �i � �̂� < 2(��i�1 � �̂�) � 2(� � �̂�) = 2~��: (51)

Consequently, conditions (30) and (31) are satis�ed which is suÆcient for sta-
bility.

Note that the MMO approach does not rely on assumption 3.1.

5 First order system

Consider the �rst order system (41) where '1(x1) = x21 together with the control
law (24) and the update law (25). The design of the MMO (43) is done by using

�ve parameter hypotheses �i 2 f�10;�5; 0; 5; 10g. The parameter estimate �̂ is
reset if the Theorem 4.1 together with (32) hold. The simulation results with
and without parameter resetting are depicted in Figure (2). Consider the sim-
ulation scenario where the system should follow a ramp signal with the slope
0:1sec�1. The parameter � jumps at time t = 4sec from � = 9 to � = �8 and
at time t = 7sec to � = 4. White noise is distributed to the system's output.
Note that the scenario di�ers slightly from the above theoretical considerations
where the parameter � is assumed to be time invariant. The upper left picture
in Figure (2) shows the control error for both cases with (fat black line) and
without (gray line) using the MMO. The upper right picture shows the control
signal respectively. The lower left picture depicts the real parameter value � (dot-

ted), the estimate of the MMO �i (dashed gray), the estimate �̂ with parameter

resetting (solid fat)and �̂ without resetting (dashed fat line). Using the MMO

estimation, �̂ converges faster to the real parameter value and the control error is
removed faster. The lower right picture of Figure (2) shows the faster decrease of
the Lyapunov function (26) and the performance enhancement. The simulation
shows an improved performance even for step disturbances in the parameter.
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Fig. 2. First order example

6 Conclusions

The presented paper provided an extension of multiple model based adaptive
control to the class of parametric strict feedback nonlinear systems. As a main
contribution a set of suÆcient closed loop stability conditions for resetting tuning
function based nonlinear adaptive controllers was given. Also, a fast multiple
model observer was introduced, from which even under transient conditions a
parameter estimate can be obtained. A �rst order control example showed that
recovering of the control error can be improved after instantaneous changes of
the parameter.

Future work will be dedicated to the application of multiple observers in au-
tomotive wheel slip control where a fast recovery of wheel slip after instantaneous
changes of the tyre/road friction coeÆcient is required.
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