Abstract
Often optimization problems involve the discovery of many scalar coefficients. Although genetic programming (GP) has been applied to the optimization and discovery of functions with an arbitrary number of scalar coefficients, recent results indicate that a method for fine-tuning GP scalar terminals can assist the discovery of solutions. In this paper we demonstrate an approach where genetic programming and evolution strategies (ES) are seamlessly combined. We apply our GP/ES hybrid, which we name Hierarchical Evolution Strategy, to the problem of evolving affine transformations and iterated function systems (IFS). We compare the results of our approach with GP and notice an improvement in performance in terms of discovering bsetter solutions and speed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Back, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press 1996
Barnsley, M.F.: Fractals Everywhere. Academic Press, (1993)
Barnsley, M.F., and Hurd, L.P.: Fractal Image Compression. AK Peters, (1993)
Collet, P., Lutton, E., Raynal, F., and Schoenauer, M.: Individual GP: an alternative viewpoint for the resolution of complex problems. Proceedings of the Genetic and Evolutionary Computation Conference, volume 2, Morgan Kaufmann, (1999) 974–981
Cretin, G., Lutton, E., Levy-Vehel, J., Glevarec, P. and Roll, C.: Mixed IFS: Resolution of the inverse problem using genetic programming. Artificial Evolution, volume 1063 of LNCS Springer Verlag, (1996) 247–258
Foley, J.D., van Dam, A., Feiner, S.K., Huges, J.F.: Computer Graphics Principle and Practice. Addison-Wesley, (1990)
Hutchinson, J.E.: Fractals and Self Similarity. Indiana University Journal, Vol. 35,No.5, (1981)
Keller, R.E., Banzhaf, W., Mehnen, J., and Weinert, K.: CAD surface reconstruction from digitized 3D point data with a genetic programming/evolution strategy hybrid. Advances in Genetic Programming 3, MIT Press, (1999) 41–65
Sharman, K.C., Esparcia Alcazar, A.I., and Li, Y.: Evolving signal processing algorithms by genetic programming. First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, GALESIA, IEE, volume 414, (1995) 473–480
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press (1992)
Langdon, W.B.: Genetic Programming and Data Structures, Kluwer Academic Publishers, (1998)
Lu, N.: Fractal Imaging. Academic Press, (1997)
Montana, J.D.: Strongly Typed Genetic Programming, Evolutionary Computation, 3(2), (1995) 199–230
Nettleton, D.J. and Garigliano, R.: Evolutionary algorithms and the construction of fractals: solution of the inverse problem. Biosystems (33), Elsevier Science (1994) 221–231
Racine, A., Hamida, S.B., and Schoenauer, M.: Parametric coding vs genetic programming: A case study. In W.B. Langdon, Riccardo Poli, Peter Nordin, and Terry Fogarty, editors,Late-Breaking Papers of EuroGP-99, Goteborg, Sweeden, (1999) 13–22
Sarafopoulos, A.: Automatic generation of affine IFS and strongly typed genetic programming. Springer-Verlag, Genetic Programming, Proceedings of EuroGP’99, volume 1598 of LNCS, (1999) 149–160
Schoenauer, M., Lamy, B., and Jouve F.:Identification of mechanical behaviour by genetic programming part II: Energy formulation. Technical report, Ecole Polytechnique, 91128 Palaiseau, France, (1995)
Schoenauer, M., Sebag, M., Jouve, F., Lamy, B., and Maitournam, H.: Evolutionary identification of macro-mechanical models. Advances in Genetic Programming 2, MIT Press, (1996) 467–488
Schwefel, P.H.: Evolution and Optimum Seeking. John Wiley & Sons, (1995)
Watt, A., and Watt, M.: Advanced Animation and Rendering Techniques Theory and Practice. Addison-Wesley, (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sarafopoulos, A. (2001). Evolution of Affine Transformations and Iterated Function Systems Using Hierarchical Evolution Strategy. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds) Genetic Programming. EuroGP 2001. Lecture Notes in Computer Science, vol 2038. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45355-5_14
Download citation
DOI: https://doi.org/10.1007/3-540-45355-5_14
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41899-3
Online ISBN: 978-3-540-45355-0
eBook Packages: Springer Book Archive