Skip to main content

An Indirect Block-Oriented Representation for Genetic Programming

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2038))

Included in the following conference series:

Abstract

When Genetic Programming (GP) is applied to system identification or controller design different codings can be used for internal representation of the individuals. One common approach is a block-oriented representation where nodes of the tree structure directly correspond to blocks in a block diagram. In this paper we present an indirect block-oriented representation, which adopts some aspects of the way humans perform the modelling in order to increase the GP system’s performance. A causality measure based on an edit distance is examined to compare the direct an the indirect representation. Finally, results from a real world application of the indirect block-oriented representation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bajpai, R. and Reuß, M. (1980). A mechanistic model for penicillin production. J. Chem. Techn. Biotechn. 30, 332–344.

    Article  Google Scholar 

  • Bettenhausen, K.D. and Marenbach, P. (1995). Self-organizing modelling of biotechnological batch and fed-batch fermentations. In: EUROSIM’ 95. Elsevier Science Publishers B.V. Vienna, AT. pp. 445–450.

    Google Scholar 

  • Fogel, D.B. and Ghozeil, A. (1997). A note on representation and variation operators. IEEE Trans. on Evolutionary Computation 1(2), 159–161.

    Article  Google Scholar 

  • Freyer, S., Graefe, J., Heinzel, M. and Marenbach, P. (1998). Evolutionary generation and refinement of mathematical process models. In:Eufit’ 98, 6th European Congress on Intelligent Techniques and Soft Computing, ELITE-European Laboratory for Intelligent Techniques Engineering. Vol. III. Aachen, GER. pp. 1471–1475.

    Google Scholar 

  • Gray, G.J., Murray-Smith, D.J., Li, Y. and Sharman, K.C. (1996). Nonlinear model structure identification using genetic programming. In: Late Breaking Papers 1st Annual Conf. Genetic Programming (GP96). Stanford Bookstore. Stanford, CA. pp. 301–306.

    Google Scholar 

  • Gruau, F. (1994). Neural Network Synthesis Using Cellular Encoding and the Genetic Algorithm. PhD thesis. Ecole Normale Supérieure de Lyon. France.

    Google Scholar 

  • Iba, H. and Sato, T. (1992). Meta-level strategy learning for GA based on structured representation.. In: Proc. 2nd Pacific Rim Int. Conf. on Artificial Intelligence.

    Google Scholar 

  • Igel, C. (1998). Causality of hierarchical variable length representations. In: Proc. IEEE Int. Conf. on Evolutionary Computation. IEEE Press. pp. 324–329.

    Google Scholar 

  • Koza, J. (1990). Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems. Technical Report STAN-CS-90-1314. Computer Science Dept., Stanford University, CA.

    Google Scholar 

  • Koza, J.R., Keane, M.A., Yu, J., Bennett III, F.H. and Mydlowec, W. (2000). Evolution of a controller with a free variable using genetic programming. In: Genetic Programming, Proceedings of EuroGP’ 2000. Vol. 1802 of LNCS. Springer-Verlag. Edinburgh. pp. 91–105.

    Google Scholar 

  • Marenbach, P., Bettenhausen, K.D. and Freyer, S. (1996). Signal path oriented approach to generation of dynamic process models. In: Proc. 1st Annual Conf. on Genetic Programming (GP96). The MIT Press. Stanford, CA. pp. 327–332.

    Google Scholar 

  • Marenbach, P., Bettenhausen, K.D., Freyer, S., Nieken, U. and Rettenmaier, H. (1997). Data-driven structured modelling of a biotechnological fed-batch fermentation by means of genetic programming. IMechE Proceedings I 211, 325–332.

    Article  Google Scholar 

  • Miao, F. and Kompala, D.S. (1992). Overexpression of cloned genes using recombinant Escherichia coli regulated by a T7 promoter: I. batch cultures and kinetic modeling. Biotechnology & Bioengineering 40, 787–796.

    Article  Google Scholar 

  • O’Neill, M. and Ryan, C. (1999). Evolving multi-line compilable C programs. In: Genetic Programming: Second European Workshop EuroGP’99. Springer. Berlin. pp. 83–92.

    Google Scholar 

  • O’Reilly, U.-M. (1997). Using a distance metric on genetic programs to understand genetic operators. In: Late Breaking Papers 2nd Annual Conf. Genetic Programming (GP97). Stanford Bookstore. Stanford University, CA. pp. 199–206.

    Google Scholar 

  • Rechenberg, I. (1994). Evolutionsstrategie’ 94. Verlag Frommann-Holzboog. Stuttgart.

    Google Scholar 

  • Rosca, J.P. (1995). An analysis of hierarchical genetic programming. Technical Report 566. University of Rochester, Computer Science Department.

    Google Scholar 

  • Sendhoff, B., Kreutz, M. and von Seelen, W. (1997). A condition for the genotype-phenotype mapping: Causality. In: Proceedings of the Seventh International Conference on Genetic Algorithms. Morgan Kauffmann Press. pp. 73–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brucherseifer, E., Bechtel, P., Freyer, S., Marenbach, P. (2001). An Indirect Block-Oriented Representation for Genetic Programming. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds) Genetic Programming. EuroGP 2001. Lecture Notes in Computer Science, vol 2038. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45355-5_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-45355-5_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41899-3

  • Online ISBN: 978-3-540-45355-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics