Abstract
In this work we tried to reduce the number of free parameters within Genetic Programming without reducing the quality of the results. We developed three new methods to adapt the probabilities, different genetic operators are applied with. Using two problems from the areas of symbolic regression and classification we showed that the results in these cases were better than randomly chosen parameter sets and could compete with parameter sets chosen with empirical knowledge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P.J. Angeline: Adaptive and Self-adaptive Evolutionary Computations. In: M. Palaniswami, Y. Attikiouzel, R. Marks, D. Fogel and T. Fukuda (Eds.) Computational Intelligence: A Dynamic System Perspective, NJ: IEEE Press, 152–161, 1995
P.J. Angeline: Two Self-Adaptive Crossover Operators for Genetic Programming. In: P. Angeline, K. Kinnear (Eds.) Advances in Genetic Programming II. Cambridge, MA: MIT Press, 89–110, 1996
J. Arabas, Z. Michalewicz and J. Mulawka: GAVaPS-a Genetic Algorithm with Varying Population Size. In: Procceedings of the First IEEE Conference on Evolutionary Computation. Orlando, Florida: IEEE Press. 73–78, 1994
T. Bäck, A.E. Eiben and N.A.L. van der Vaart: An empirical study on GAs “without parameters”. In: Parallel Problem Solving from Nature-PPSN VI. Berlin: Springer-Verlag, 315–324, 2000
Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction. San Francisco, CA: Morgan Kaufmann, 1998
Brameier, M. and Banzhaf, W: Evolving Teams of Predictors with Genetic Programming. Technical Report, University of Dortmund, Computational Intelligence, Collaborative Research Center 531, 2001. To appear
W.J. Conover: Practical nonparametric statistics. New York: John Wiley & Sons, 309–314, 1971
L. Davis: Adapting Operator Probabilities in Genetic Algorithms. In: J.D. Schaffer (Ed.) Procceedings of the Third International Conference on Genetic Algorithms and Their Applications. San Mateo, CA: Morgan Kaufmann, 61–69, 1989
N. Hansen and A. Ostermeier: Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In: Proceedings of the 1996 IEEE International Conference on Evolutionary Computation. 312-317, 1996
J.R. Koza: Genetic Programming: On the Programming of Computers by Natural Selection. Cambridge, MA: MIT Press, 1992
P. Marenbach and H. Pohlheim: Generation of Structured Process Models Using Genetic Programming. In: Fogarty, T.C. (Ed.) Evolutionary Computing. Selected Papers, volume 1143 of Lecture Notes in Computer Science, Berlin: Springer Verlag, 102–109, 1996
R. Poli: Some Steps Towards a Form of Parallel Distributed Genetic Programming. In: The 1st Online Workshop on Soft Computing (WSC1). http://www.bioele.nuee.nagoya-u.ac.jp/wsc1/, 1996
H.-P. Schwefel: Evolution and Optimum Seeking. New York: John Wiley & Sons, Inc., 1995
W.M. Spears: Adapting Crossover in Evolutionary Algorithms. In: R. Reynolds and D.B. Fogel (Eds.) Procceedings of the Fourth Annual Conference on Evolutionary Programming. MIT Press, 367–384, 1995
A. Teller and M. Veloso: PADO: A new learning architecture for object recognition. In: Symbolic Visual Learning. Oxford University Press, 81–116, 1996
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Niehaus, J., Banzhaf, W. (2001). Adaption of Operator Probabilities in Genetic Programming. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds) Genetic Programming. EuroGP 2001. Lecture Notes in Computer Science, vol 2038. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45355-5_26
Download citation
DOI: https://doi.org/10.1007/3-540-45355-5_26
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41899-3
Online ISBN: 978-3-540-45355-0
eBook Packages: Springer Book Archive