Abstract
In this paper we continue our study on adaptive genetic programming. We use Stepwise Adaptation of Weights (saw) to boost performance of a genetic programming algorithm on simple symbolic regression problems. We measure the performance of a standard gp and two variants of saw extensions on two different symbolic regression problems from literature. Also, we propose a model for randomly generating polynomials which we then use to further test all three gp variants.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dimitris Achlioptas, Lefteris M. Kirousis, Evangelos Kranakis, Danny Krizanc, Michael S.O. Molloy, and Yannis C. Stamatiou. Random constraint satisfaction a more accurate picture. In Gert Smolka, editor, Principles and Practice of Constraint Programming-CP97, pages 107–120. Springer-Verlag, 1997.
With S. Ar, R. Lipton, and R. Rubinfeld. Reconstructing algebraic functions from erroneous data. SIAM Journal on Computing, 28(2):487–510, 1999.
A.K. Cline. Six subprograms for curve fitting using splines under tension. Commun. ACM, 17(4):220–223, April 1974.
J. Eggermont, A.E. Eiben, and J.I. van Hemert. Adapting the fitness function in GP for data mining. In R. Poli, P. Nordin, W.B. Langdon, and T.C. Fogarty, editors, Genetic Programming, Proceedings of EuroGP’99, volume 1598 of LNCS, pages 195–204, Goteborg, Sweden, 26-27 May 1999. Springer-Verlag.
A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert. Graph coloring with adaptive evolutionary algorithms. Journal of Heuristics, 4(1):25–46, 1998.
A.E. Eiben and J.I. van Hemert. SAW-ing EAs: adapting the fitness function for solving constrained problems, chapter 26, pages 389–402. McGraw-Hill, London, 1999.
C. Gathercole and P. Ross. Dynamic training subset selection for supervised learning in genetic programming. In Proceedings of the Parallel Problem Solving from Nature III Conference, pages 312–321, 1994.
Chris Gathercole and Peter Ross. Tackling the boolean even N parity problem with genetic programming and limited-error fitness. In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 119–127, Stanford University, CA, USA, 13-16 July 1997. Morgan Kaufmann.
J.R. Koza. Genetic Programming. MIT Press, 1992.
J.R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge, MA, 1994.
J.J. Merelo, J. Carpio, P. Castillo, V.M. Rivas, and G. Romero. Evolving objects, 1999. Available at http://geneura.ugr.es/~jmerelo/EOpaper/.
Z. Michalewicz, K. Deb, M. Schmidt,, and T. Stidsen. Test-case generator for nonlinear continuous parameter optimization techniques. IEEE Transactions on Evolutionary Computation, 4(3), 2000.
David S. Moore and George P. McCabe. Introduction to the Practice of Statistics. W.H. Freeman and Company, New York, 3rd edition, 1998.
J. Paredis. Co-evolutionary computation. Artificial Life, 2(4):355–375, 1995.
Byoung-Tak Zhang. Bayesian methods for efficient genetic programming. Genetic Programming And Evolvable Machines, 1(3):217–242, July 2000.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Eggermont, J., van Hemert, J.I. (2001). Adaptive Genetic Programming Applied to New and Existing Simple Regression Problems. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds) Genetic Programming. EuroGP 2001. Lecture Notes in Computer Science, vol 2038. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45355-5_3
Download citation
DOI: https://doi.org/10.1007/3-540-45355-5_3
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41899-3
Online ISBN: 978-3-540-45355-0
eBook Packages: Springer Book Archive