Abstract
In this paper we present a systematic experimental study of some of the parameters influencing parallel and distributed genetic programming (PADGP) by using three benchmark problems. We first present results on the system’s communication topology and then we study the parameters governing individual migration between subpopulations: the number of individuals sent and the frequency of exchange. Our results suggest that fitness evolution is more sensitive to the migration factor than the communication topology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D. Andre and J.R. Koza. Parallel genetic programming: A scalable implementation using the transputer network architecture. In P. Angeline and K. Kinnear, editors, Advances in Genetic Programming 2, pages 317–337, Cambridge, MA, 1996. The MIT Press.
E. Cantú-Paz and D.E. Goldberg. Modeling idealized bounding cases of parallel genetic algorithms. In J.R. Koza, K. Deb, M. Dorigo, D.B. Fogel, M. Garzon, H. Iba, and R.L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 456–462. Morgan Kaufmann, San Francisco, CA, 1997.
J.P. Cohoon, S.U. Hedge, W.N. Martin, and D. Richards. Punctuated equilibria: A parallel genetic algorithm. In J.J. Grefenstette, editor, Proceedings of the Second International Conference on Genetic Algorithms, page 148. Lawrence Erlbaum Associates, 1987.
F. Fernández, J.M. Sánchez, and M. Tomassini. Feasibility study of genetic programming for solving the problem of placement and routing on FPGAs. In Proceedings of the XV Conference on Design of Circuits and Integrated Systems (DCIS 2000), pages 24–28. LIRMM, Montpellier University, 2000.
F. Fernández, M. Tomassini, W.F. Punch III, and J.M. Sánchez. Experimental study of multipopulation parallel genetic programming. In Riccardo Poli, Wolfgang Banzhaf, William B. Langdon, Julian F. Miller, Peter Nordin, and Terence C. Fogarty, editors, Genetic Programming, Proceedings of EuroGP’2000, volume 1802 of LNCS, pages 283–293. Springer-Verlag, Heidelberg, 2000.
F. Fernández, M. Tomassini, L. Vanneschi, and L. Bucher. A distributed computing environment for genetic programming using MPI. In J. Dongarra, P. Kaksuk, and N. Podhorzsky, editors, Recent Advances in Parallel Virtual Machine and Message Passing Interface, volume 1908 of Lecture Notes in Computer Science, pages 322–329. Springer-Verlag, Heidelberg, 2000.
F.H. Bennet III, J. Koza, J. Shipman, and O. Stiffielman. Building a parallel computer system for $18,000 that performs a half peta-flop per day. In W. Banzhaf, J. Daida, A.E. Eiben, M. Garzon, V. Honavar, M. Jakiela, and R. Smith, editors, Proceedings of the genetic and evolutionary computation conference GECCO’99, pages 1484–1490, San Francisco, CA, 1999. Morgan Kaufmann.
J.R. Koza. Genetic Programming. The MIT Press, Cambridge, Massachusetts, 1992.
S.C. Lin, W.F. Punch, and E.D. Goodman. Coarse-grain parallel genetic algorithms: Categorization and a new approach. In Sixth IEEE SPDP, pages 28–37, 1994.
B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithms. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, page 428. Morgan Kaufmann, 1989.
D. Mange and M. Tomassini (Eds). Bio-Inspired Computing Machines: Towards Novel Computational Architectures. Presses Polytechniques et Universitaires Romandes, Lausanne, 1998.
M. Oussaidène, B. Chopard, O. Pictet, and M. Tomassini. Parallel genetic programming and its application to trading model induction. Parallel Computing, 23:1183–1198, 1997.
W. Punch. How effective are multiple popululations in genetic programming. In J.R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M. Garzon, D. Goldberg, H. Iba, and R.L. Riolo, editors, Genetic Programming 1998: Proceedings of the Third Annual Conference, pages 308–313, San Francisco, CA, 1998. Morgan Kaufmann.
T. Weinbrenner. Genetic Programming Kernel version 0.5.2_C++ Class Library. University of Darmstadt.
D. Whitley, S. Rana, and R.B. Heckendorn. Island model genetic algorithms and linearly separable problems. In D. Corne and J.L. Shapiro, editors, Evolutionary Computing: Proceedings of the AISB Workshop, Lecture notes in computer science, vol. 1305, pages 109–125. Springer-Verlag, Berlin, 1997.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fernández, F., Tomassini, M., Vanneschi, L. (2001). Studying the Influence of Communication Topology and Migration on Distributed Genetic Programming. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds) Genetic Programming. EuroGP 2001. Lecture Notes in Computer Science, vol 2038. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45355-5_5
Download citation
DOI: https://doi.org/10.1007/3-540-45355-5_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41899-3
Online ISBN: 978-3-540-45355-0
eBook Packages: Springer Book Archive