Abstract
A new parallel implementation of genetic programming based on the cellular model is presented and compared with the island model approach. Although the widespread belief that cellular model is not suitable for parallel genetic programming implementations, experimental results show a better convergence with respect to the island approach, a good scale-up behaviour and a nearly linear speed-up.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andre D., Koza, J.R. Exploiting the fruits of parallelism: An implementation of parallel genetic programming that achieves super-linear performance. Information Science Journal, Elsevier, 1997.
Cantú-Paz, E. A summary of research on parallel genetic algorithms, Technical Report 950076, Illinois Genetic Algorithm Laboratory, University of Illinois at Urbana Champaign, Urbana, July 1995.
Dracopoulos, D.C., Kent, S. Speeding up Genetic Programming: A Parallel BSP implementation. Genetic Programming 1996, Proceedings of the First Annual Conference, pp 125–136, MIT Press, Stanford University, July 1996.
Fernández, F., Tomassini, M., Punch, W.F., Sánchez, J.M. Experimental Study of Multipopulation Parallel Genetic Programming. European Conference on Genetic Progamming, LNCS 1082, Springer, Edinburgh 1999.
Fernández, F., Tomassini, M., Vanneschi, L., Bucher, L. A Distributed Computing Environment for Genetic Programming Using MPI. Recent Advances in Parallel Virtual Machine and Message Passing Interface, 7th European PVM/MPI Users’ Group Meeting, Balatonfured, Hungary, September 2000.
Juillé, H., Pollack, J.B. Parallel Genetic Programming on Fine-Grained SIMD Architectures. Working Notes of the AAAI-95 Fall Symposium on Genetic Programming”, AAAI Press, 1995.
Juillé, H., Pollack, J.B. Massively Parallel Genetic Programming. In P. Angeline and K. Kinnear, editors, Advances in Genetic Programming: Volume 2, MIT Press, Cambridge, 1996.
Koza, J.R. Genetic Programming: On the Programming of Computers by means of Natural Selection. MIT Press, Cambridge, 1992.
J.R. Koza and D. Andre (1995) Parallel genetic programming on a network of transputers. Technical Report CS-TR-95-1542, Computer Science Department, Stanford University.
W.N. Martin, J. Lienig and J.P. Cohoon (1997), Island (migration) models: evolutionary algorithms based on punctuated equilibria, in T. Bäck, D.B. Fogel, Z. Michalewicz (eds.), Handbook of evolutionary Computation. IOP Publishing and Oxford University Press.
Niwa, T., Iba, H. Distributed Genetic Programming-Empirical Study and Analisys -Genetic Programming 1996, Proceedings of the First Annual Conference, MIT Press, Stanford University, July 1996.
Oussaidéne, M., Chopard, B. Pictet, O., Tommasini, M. Parallel Genetic Programming and its Application to Trading Model Induction. Parallel Computing, vol. 23,n. 2, September 1997.
C.C. Pettey (1997), Diffusion (cellular) models, in T. Bäck, D.B. Fogel, Z. Michalewicz (eds.), Handbook of evolutionary Computation. IOP Publishing and Oxford University Press.
Punch, W.F. How effective are Multiple Populations in Genetic Programming. Genetic Programming 1998, Proceedings of the Third Annual Conference, MIT Press, University of Winsconsin, July 1998.
Salhi, A., Glaser, H., De Roure, D. Parallel Implementation of a Genetic-Programming based Tool for Symbolic Regression. Technical Report DSSE-TR-97-3, Dept. Comp. Science, University of Souhampton, 1997.
Tackett, W.A., Carmi, A. Simple Genetic Programming in C, Available through the genetic programmming archive at ftp://ftp.io.com/pub/genetic-programming/code/sgpc1.tar.Z.
T. Toffoli and N. Margolus (1986).Cellular Automata Machines A New Environment for Modeling. The MIT Press, Cambridge, Massachusetts.
Tomassini M. Parallel and Distributed Evolutionary Algorithms: A Review, J. Wiley and Sons,Chichester, K. Miettinen, M. Mkel, P. Neittaanmki and J. Periaux (editors), pp. 113–133, 1999.
D. Whitley (1993). Cellular Genetic Algorithms. Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Folino, G., Pizzuti, C., Spezzano, G. (2001). CAGE: A Tool for Parallel Genetic Programming Applications. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds) Genetic Programming. EuroGP 2001. Lecture Notes in Computer Science, vol 2038. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45355-5_6
Download citation
DOI: https://doi.org/10.1007/3-540-45355-5_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41899-3
Online ISBN: 978-3-540-45355-0
eBook Packages: Springer Book Archive