Abstract
We introduce the construct of neighborhood dependency (ND) to express regularities like: “Families with similar size and income, tend to own cars of similar size.” Arguably, the discovery of such regularities is useful for prediction purposes. We have implemented and tested an algorithm for mining NDs. The discovered NDs are then used in the P-neighborhood method to predict unknown values.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.
R.J. Miller and Y. Yang. Association rules over interval data. In Proc. ACM SIGMOD Int. Conf. Management of Data, pages 452–461, Tucson, AZ, 1997.
R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. In Proc. ACM SIGMOD Int. Conf. Management of Data, pages 1–12, Montreal, Canada, 1996.
J. Wijsen, R.T. Ng, and T. Calders. Discovering roll-up dependencies. In Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, pages 213–222, San Diego, CA, 1999.
I.H. Witten and E. Frank. Data Mining. Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, 2000.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bassée, R., Wijsen, J. (2001). Neighborhood Dependencies for Prediction. In: Cheung, D., Williams, G.J., Li, Q. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2001. Lecture Notes in Computer Science(), vol 2035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45357-1_59
Download citation
DOI: https://doi.org/10.1007/3-540-45357-1_59
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41910-5
Online ISBN: 978-3-540-45357-4
eBook Packages: Springer Book Archive