Abstract
A number of approaches based on GRASP are presented for the Multiconstraint Knapsack Problem. GRASP combines greedy construction of feasible solutions with local search. Results from applying our algorithms to standard test problems are presented and compared with results obtained by Chu and Beasley.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. of Global Optimization 6 (1995) 109–133
Weingarter, H.M.: Mathematical programming and the analysis of capital budgeting problems. Markham Publishing (1967) Chicago
Shih, W.: A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem. J. of the Operational Res. Soc. 30 (1979) 369–378
Cotta, C., Troya, J.M.: A hybrid genetic algorithm for the 0-1 multiple knapsack problem. In: Artificial neural nets and genetic algorithms 3, eds. Smith, G.D., Steele, N.C., Albrecht, R.F., Springer-Verlag (1998) 251–255
Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. J. of Heuristics 4 (1998) 63–86
Pirkul, H.: A Heuristic Search Procedure for the Multiconstraint Zero-One Knapsack Problem. Naval Research Logistics 34 (1987) 161–172
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chardaire, P., McKeown, G.P., Maki, J.A. (2001). Application of GRASP to the Multiconstraint Knapsack Problem⋆. In: Boers, E.J.W. (eds) Applications of Evolutionary Computing. EvoWorkshops 2001. Lecture Notes in Computer Science, vol 2037. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45365-2_4
Download citation
DOI: https://doi.org/10.1007/3-540-45365-2_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41920-4
Online ISBN: 978-3-540-45365-9
eBook Packages: Springer Book Archive