Abstract
This chapter summarises the current state of the art in content based image retrieval (CBIR). It discusses the need for image retrieval by content, and the types of query which might be encountered. It describes the main techniques currently used to retrieve images by content at both primitive and semantic levels, describes the features of some commercial and experimental CBIR systems, assesses the capabilities of current technology, and outlines possible future developments the field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arkin,) E. M. et al (1991) An efficiently computable metric for comparing poly-gonal shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3):209–216.
Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. (1990). R*-tree: An efficient and robust access method for points and rectangles. SIGMOD Record (ACM Special Interest Group on Management of Data), 19(2):322–331.
Biederman, I. (1987) Recognition-by-components: a theory of human image un-derstanding. Psychological Review, 94(2):115–147.
Bjarnestam, A. (1998) Description of an image retrieval system. presented at The Challenge of Image Retrieval research workshop, Newcastle upon Tyne, 5 February 1998.
Brooks, R. A. (1983) Model-based three-dimensional interpretations of two-dimensional images. IEEE Transactions on Pattern Analysis and Machine In-telligence, 5(2):140–150.
Buijs J. M. and Lew M. S. (1999) Visual learning of simple semantics in Im-ageScape. in VISUAL99: 3rd International Conference on Visual Information and Information Systems. Lecture Notes in Computer Science, 1614:131–138.
Campbell, N. W. et al (1997) Interpreting Image Databases by Region Classification. Pattern Recognition, 30(4):555–563.
Chang, S. K. et al (1987) Iconic indexing by 2-D strings. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(3):413–427.
Chen, J. L. and Stockman, C. C. (1996) Indexing to 3D model aspects using 2D contour features. in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 913–920.
Corridoni, J. M. et al (1998) Image retrieval by color semantics with incomplete knowledge. Journal of the American Society for Information Science, 49(3):267–2.
Cortelazzo, G. et al (1994) Trademark shape description by string-matching tech-niques. Pattern Recognition, 27(8):1005–1018.
Dickinson S. et al (1998) Viewpoint-invariant indexing for content-based image retrieval. in IEEE International Workshop on Content-based Access of Image and Video Databases (CAIVD’98), Bombay, India, 20–30.
Eakins, J. P. (1993) Design criteria for a shape retrieval system. Computers in Industry, 21:167–184.
Eakins J. P. (1998) Techniques for image retrieval. Library and Information Briefings, in press.
Eakins J. P., Graham M. E., and Boardman, J. M. (1997) Evaluation of a trade-mark retrieval system. in 19th BCS IRSG Research Colloquium on Information Retrieval, Robert Gordon University, Aberdeen.
Eakins, J. P., Boardman, J. M., and Graham, M. E. (1998). Similarity retrieval of trademark images. IEEE Multimedia, 5(2):53–63.
Eakins, J. P., and Graham, M. E. (1999) Content-Based Image Retrieval. JISC Technology Applications Programme Report, 39. Available at http://www.unn.ac.uk/iidr/CBIR/report.html.
Enser P. G. B. (1995) Pictorial information retrieval. Journal of Documentation, 51(2):126–170.
Enser, P. G. B. and McGregor, C. G. (1992) Analysis of visual information retrieval queries. British Library Research and Development Report, 6104.
Evans, A. (1987) TELCLASS: a structural approach to TV classiffication. Audi-ovisual Librarian, 13(4):215–216.
Faloutsos, C. et al (1994) Effcient and effective querying by image content. Journal of Intelligent Information Systems, 3, 231–262.
Feder, J. (1996) Towards image content-based retrieval for the World-Wide Web. Advanced Imaging, 11(1), 26–29.
Flickner, M. et al (1995). Query by image and video content: The QBIC system. Computer, 28(9):23–32.
Forsyth, D. A. et al (1997). Finding pictures of objects in large collections of images. in Digital Image Access and Retrieval: 1996 Clinic on Library Applications of Data Processing (Heidorn, P. B. and Sandore, B, eds), 118–139. Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign.
Gordon, C. (1990) An introduction to ICONCLASS. in Terminology for Museums Proceedings of an International Conference, Cambridge, 1988 (Roberts, D. A., ed), 233–244. Museum Documentation Association.
Greenberg, J. (1993). Intellectual control of visual archives: a comparison between the Art and Architecture Thesaurus and the Library of Congress Thesaurus for Graphic Materials. Cataloging & Classification Quarterly, 16(1):85–101.
Gudivada, V. N. and Raghavan, V. V. (1995). Guest editors’ introduction: 5Content-based image retrieval systems. Computer, 28(9):18–22.
Gudivada, V. N. and Raghavan, V. V. (1995). Design and evaluation of algorithms for image retrieval by spatial similarity. ACM Trans. on Information Systems, 13(2):115–144.
Gupta, A. et al (1996). The Virage image search engine: an open framework for image management. in Storage and Retrieval for Image and Video Databases IV, Proc SPIE 2670:76–87.
Haralick, R. M. et al (1973). Textrual features for image classification. IEEE Transactions on Systems Man and Cybernetics, 3(6):610–621.
Hastings, S. K. (1995). Query categories in a study of intellectual access to digitized art images. ASIS’ 95: proceedings of the 58th ASIS Annual Meeting, 32:3–8.
Hou, Y. T. et al (1992). A content-based indexing technique using relative geometry features. in Image Storage and Retrieval Systems, Proc SPIE 1662:59–68.
Hu, M. K. (1962). Visual pattern recognition by moment invariants. IRE Trans-actions on Information Theory, IT-8: 179–187.
Huang, T. et al (1997). Multimedia Analysis and Retrieval System (MARS) project in Digital Image Access and Retrieval. 1996 Clinic on Library Applications of Data Processing (Heidorn, P. B. and Sandore, B, eds), 101–117. Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign.
Ingwersen, P. (1996). Cognitive perspectives of information retrieval interaction: elements of a cognitive IR theory. Journal of Documentation, 52(1):3–50.
Jacobs, C. E. et al (1995). Fast Multiresolution Image Querying. Proceedings of SIGGRAPH 95, Los Angeles, CA (ACM SIGGRAPH Annual Conference Series, 1995), 277–286.
Jaimes, A. and Chang S. F. (1999). Model-based classiffication of visual information for content-based retrieval. in Storage and Retrieval for Image and Video Databases VII, Proc SPIE 3656:402–414.
Jain, A. K. et al (1996). Object matching using deformable templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(3):267–277.
Jain, A. K. and Vailaya (1996). A Image retrieval using color and shape. Pattern Recognition, 29(8):1233–1244.
Jin, J. S. et al (1998). Using browsing to improve content-based image retrieval in Multimedia Storage and Archiving Systems III, Proc SPIE 3527:101–109.
Keister, L. H. (1994). User types and queries: impact on image access systems in Challenges in indexing electronic text and images (Fidel, R. et al., eds). ASIS, 7–2
Kim, Y. S. and Kim, W. Y. (1998). Content-based trademark retrieval system using a visually salient feature. Image and Vision Computing, 16:931–939.
Kurniawati, R. et al (1997). The SS+ tree: an improved index structure for similar-ity searches in high-dimensional feature space. in Storage and Retrieval for Image and Video Databases V(Sethi, I. K. and Jain, R. C., eds), Proc SPIE 3022:110–120.
Lee, D. et al (1994). Query by image content using multiple objects and multiple features: user interface issues. in Proceedings of ICIP-94, International Conference on Image Processing, Austin, Texas, 76–80.
Lee, C. S. et al (1999). Information embedding based on users’ relevance feed-back for image retrieval. in Multimedia Storage and Archiving Systems IV (S Panchanathan et al, eds), Proc SPIE 3846:294–304.
Leung, T. and Malik J. (1999). Recognizing surfaces using three-dimensional tex-tons. presented at Seventh IEEE International Conference on Computer Vision (ICCV-99), Corfu, Greece, 2:1010–1017.
Levine, M. D. (1985). Vision in man and machine, ch 10. McGraw-Hill, NY
Lewis, P. H. et al (1996). Media-based navigation with generic links. in Proceedings of the Seventh ACM Conference on Hypertext, New York, 215–223.
Lewis, P. H. et al (1997). Towards multimedia thesaurus support for media-based navigation. in Image Databases and Multimedia Search, (Smeulders, A. W. M. and Jain, R. C., eds), 111–118. World Scientific, Amsterdam
Lin, K.I., Jagadish, H. V., and Faloutsos, C. (1994). The TV-tree — an index struc-ture for high-dimensional data. VLDB Journal: Special Issue on Spatial Database Systems, 3(4):517–542.
Liu, F. and Picard, R. W. (1996). Periodicity, directionality and randomness: Wold features for image modeling and retrieval. IEEE Trans. Pattern Analysis and Machine Intelligence, 18(7):722–733.
Ma, W.Y. and Manjunath, B. S. (1997). NeTra: A toolbox for navigating large image databases. In Proc. of the IEEE Int. Conf. on Image Processing, 562–571.
Ma, W. Y. and Manjunath, B. S. (1998). A texture thesaurus for browsing large aerial photographs. Journal of the American Society for Information Science 49(7):633–648.
Manjunath, B. S. and Ma, W.-Y. (1996). Texture features for browsing and re-trieval of image data. IEEE Trans. Pattern Analysis and Machine Intelligence, 18(8):837–42.
Manmatha, R. and avela, S. (1997). A syntactic characterization of appearance and its application to image retrieval. in Human Vision and Electronic Imaging II (owitz BE and Pappas TN eds), SPIE 3016, 484–95.
Markey, K. (1984). Interindexer consistency tests: a literature review and report of a test of consistency in indexing visual materials. Library and Information Science Research, 6:155–77.
Markkula, M. and Sormunen, E. (1998). Searching for photos-journalists’ practices in pictorial IR. presented at The Challenge of Image Retrieval research workshop, Newcastle upon Tyne, February 1998.
Mehrotra, R. and Gary J. E. (1995). Similar-shape retrieval in shape data man-agement. IEEE Computer, 28(9):57–62.
Minka, T. (1996). An image database browser that learns from user interaction.MIT Media Laboratory Technical Report, #365.
Nastar, C. et al (1998). Surfimage: a flexible content-based image retrieval system presented at ACM Multimedia’ 98, Bristol, UK.
Niblack, W. et al (1998). Updates to the QBIC system. in Storage and Retrieval for Image and Video Databases VI(Sethi, I. K. and Jain, R. C., eds), Proc SPIE 3312, 150–161.
Ogle, V. E. and Stonebraker, M. (1995). CHABOT: Retrieval from a relational database of images. IEEE Computer, 28(9):40–48.
Oliva, A. et al (1999). Global semantic classification of scenes using power spectrum templates. presented at CIR-99: The Challenge of Image Retrieval, Newcastle upon Tyne, UK, February 1999.
Opitz, H. et al (1969). Workpiece classification and its industrial application.International Journal of Machine Tool Design Research, 9:39–50.
Paquet, E. and Rioux, M. (1998). Content-based access of VRML libraries Lecture Notes in Computer Science 1464:20–32.
Pentland, A. et al (1996). Photobook: tools for content-based manipulation of image databases. International Journal of Computer Vision, 18(3)233–254.
Ravela, S. and Manmatha, R. (1998a). Retrieving images by appearance. in Pro-ceedings of IEEE International Conference on Computer Vision (IICV98), Bombay, India, 608–613.
Ravela, S. and Manmatha, R. (1998). On computing global similarity in images. in Proceedings of IEEE Workshop on Applications of Computer Vision (WACV98), Princeton, NJ, 82–87.
Ren, M. et al (2000). Human perception of trademark images: implications for retrieval system design. Journal of Electronic Imaging, in press.
Rui, Y. et al (1997). Relevance feedback techniques in interactive content-based image retrieval. in Storage and Retrieval for Image and Video Databases VI(Sethi, I. K. and Jain, R. C., eds), Proc SPIE 3312: 25–36.
Rui, Y., Huang, T. S., Ortega, M., and Mehrotra, S. (1998). Relevance feedback: A power tool in interactive content-based image retrieval. IEEE Tran on Circuits and Systems for Video Technology, 8(5):644–655.
Santini, S. and Jain, R. (1997). Do images mean anything? In Proc. of the Int. Conf. on Image Analysis and Processing, ICIP-97, 564–567.
Scassellati, B. et al (1994). Retrieving images by 2-D shape: a comparison of computation methods with human perceptual judgements. in Storage and Retrieval for Image and Video Databases II (Niblack, W. R. and Jain, R. C., eds), Proc SPIE2185:2–14.
Schiele, B. and Crowley J. L. (1997). The concept of visual classes for object classification. in Proceedings of SCIA’97, Tenth Scandinavian Conference on Image Analysis, Lappeenranta, Finland, 43–50.
Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, in press.
Smith, J. R. and Chang S. F. (1994). Transform features for texture classifica-tion and discrimination in large image databases. in Proceedings ICIP-94, Austin,Texas, 407–411.
Smith, J. R. and Chang S. F. (1997a). Querying by color regions using the Visu-alSEEk content-based visual query system. Intelligent Multimedia Information Retrieval (Maybury, M. T., ed). AAAI Press, Menlo Park, CA, 23–41.
Smith, J. R. and Chang S. F. (1997b). An image and video search engine for the World-Wide Web. in Storage and Retrieval for Image and Video Databases V (Sethi, I. K. and Jain, R. C., eds), Proc SPIE 3022:84–95.
Srihari, R. K. (1995). Automatic indexing and content-based retrieval of captioned images. IEEE Computer, 28(9):49–56.
Stark, H-G (1996). On image retrieval with wavelets. International Journal of Imaging Systems and Technology, 7:200–210.
Stricker, M. and Dimai, A. (1996). Color indexing with weak spatial constraints in Storage and Retrieval for Image and Video Databases IV (Sethi, I. K. and Jain, R. C., eds), Proc SPIE 2670:29–4.
Stricker, M. and Orengo, M. (1995). Similarity of color images. in Storage and Retrieval for Image and Video Databases III (Niblack, W. R. and Jain, R. C., eds), Proc SPIE 2420:381–392.
Swain, M. J. and Ballard, D. H. (1991). Color indexing. International Journal of Computer Vision, 7(1):11–32.
Szummer, M. and Picard, R. (1998). Indoor-outdoor image classification. in IEEE International Workshop on Content-based Access of Image and Video Databases (CAIVD98), Bombay, India, 42–51.
Tamura, H., Mori, S., and Yamawaki, T. (1978). Texture features corresponding to visual perception. IEEE Trans. on Systems, Man, and Cybernetics, 8(6):460–473.
Teh, C. H. and Chin, R. T. (1988). Image analysis by methods of moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4):496–513.
Vailaya, A. et al (1998). On image classification: city images vs landscapes. Pattern Recognition, 31(12):921–1936.
Vailaya, A. and Jain, A. K. (1999). Incremental learning for Bayesian classification of images. presented at IEEE International Conference on Image Processing (ICIP’99), Kobe, Japan, October 1999.
Vleugels, J. and Veltkamp, R. (1999). Efficient image retrieval through vantage objects. presented at VISUAL99: 3rd International Conference on Visual Inform-ation and Information Systems. Lecture Notes in Computer Science 1614:769–776.
Wactlar, H. D. et al (1996). Intelligent access to digital video: the Informedia project. IEEE Computer, 29(5):46–52.
Zahn, C. T. and Roskies, C. Z. (1972). Fourier descriptor for plane closed curves.IEEE Transactions on Computers, C-21:269–281.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Eakins, J.P. (2000). Retrieval of Still Images by Content. In: Agosti, M., Crestani, F., Pasi, G. (eds) Lectures on Information Retrieval. ESSIR 2000. Lecture Notes in Computer Science, vol 1980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45368-7_6
Download citation
DOI: https://doi.org/10.1007/3-540-45368-7_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41933-4
Online ISBN: 978-3-540-45368-0
eBook Packages: Springer Book Archive