Skip to main content

Retrieval of Still Images by Content

  • Chapter
  • First Online:
Lectures on Information Retrieval (ESSIR 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1980))

Included in the following conference series:

Abstract

This chapter summarises the current state of the art in content based image retrieval (CBIR). It discusses the need for image retrieval by content, and the types of query which might be encountered. It describes the main techniques currently used to retrieve images by content at both primitive and semantic levels, describes the features of some commercial and experimental CBIR systems, assesses the capabilities of current technology, and outlines possible future developments the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arkin,) E. M. et al (1991) An efficiently computable metric for comparing poly-gonal shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3):209–216.

    Article  MathSciNet  Google Scholar 

  2. Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. (1990). R*-tree: An efficient and robust access method for points and rectangles. SIGMOD Record (ACM Special Interest Group on Management of Data), 19(2):322–331.

    Google Scholar 

  3. Biederman, I. (1987) Recognition-by-components: a theory of human image un-derstanding. Psychological Review, 94(2):115–147.

    Article  Google Scholar 

  4. Bjarnestam, A. (1998) Description of an image retrieval system. presented at The Challenge of Image Retrieval research workshop, Newcastle upon Tyne, 5 February 1998.

    Google Scholar 

  5. Brooks, R. A. (1983) Model-based three-dimensional interpretations of two-dimensional images. IEEE Transactions on Pattern Analysis and Machine In-telligence, 5(2):140–150.

    Google Scholar 

  6. Buijs J. M. and Lew M. S. (1999) Visual learning of simple semantics in Im-ageScape. in VISUAL99: 3rd International Conference on Visual Information and Information Systems. Lecture Notes in Computer Science, 1614:131–138.

    Google Scholar 

  7. Campbell, N. W. et al (1997) Interpreting Image Databases by Region Classification. Pattern Recognition, 30(4):555–563.

    Article  Google Scholar 

  8. Chang, S. K. et al (1987) Iconic indexing by 2-D strings. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(3):413–427.

    Article  Google Scholar 

  9. Chen, J. L. and Stockman, C. C. (1996) Indexing to 3D model aspects using 2D contour features. in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 913–920.

    Google Scholar 

  10. Corridoni, J. M. et al (1998) Image retrieval by color semantics with incomplete knowledge. Journal of the American Society for Information Science, 49(3):267–2.

    Article  Google Scholar 

  11. Cortelazzo, G. et al (1994) Trademark shape description by string-matching tech-niques. Pattern Recognition, 27(8):1005–1018.

    Article  Google Scholar 

  12. Dickinson S. et al (1998) Viewpoint-invariant indexing for content-based image retrieval. in IEEE International Workshop on Content-based Access of Image and Video Databases (CAIVD’98), Bombay, India, 20–30.

    Google Scholar 

  13. Eakins, J. P. (1993) Design criteria for a shape retrieval system. Computers in Industry, 21:167–184.

    Article  Google Scholar 

  14. Eakins J. P. (1998) Techniques for image retrieval. Library and Information Briefings, in press.

    Google Scholar 

  15. Eakins J. P., Graham M. E., and Boardman, J. M. (1997) Evaluation of a trade-mark retrieval system. in 19th BCS IRSG Research Colloquium on Information Retrieval, Robert Gordon University, Aberdeen.

    Google Scholar 

  16. Eakins, J. P., Boardman, J. M., and Graham, M. E. (1998). Similarity retrieval of trademark images. IEEE Multimedia, 5(2):53–63.

    Article  Google Scholar 

  17. Eakins, J. P., and Graham, M. E. (1999) Content-Based Image Retrieval. JISC Technology Applications Programme Report, 39. Available at http://www.unn.ac.uk/iidr/CBIR/report.html.

  18. Enser P. G. B. (1995) Pictorial information retrieval. Journal of Documentation, 51(2):126–170.

    Article  Google Scholar 

  19. Enser, P. G. B. and McGregor, C. G. (1992) Analysis of visual information retrieval queries. British Library Research and Development Report, 6104.

    Google Scholar 

  20. Evans, A. (1987) TELCLASS: a structural approach to TV classiffication. Audi-ovisual Librarian, 13(4):215–216.

    Google Scholar 

  21. Faloutsos, C. et al (1994) Effcient and effective querying by image content. Journal of Intelligent Information Systems, 3, 231–262.

    Article  Google Scholar 

  22. Feder, J. (1996) Towards image content-based retrieval for the World-Wide Web. Advanced Imaging, 11(1), 26–29.

    MathSciNet  Google Scholar 

  23. Flickner, M. et al (1995). Query by image and video content: The QBIC system. Computer, 28(9):23–32.

    Article  Google Scholar 

  24. Forsyth, D. A. et al (1997). Finding pictures of objects in large collections of images. in Digital Image Access and Retrieval: 1996 Clinic on Library Applications of Data Processing (Heidorn, P. B. and Sandore, B, eds), 118–139. Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign.

    Google Scholar 

  25. Gordon, C. (1990) An introduction to ICONCLASS. in Terminology for Museums Proceedings of an International Conference, Cambridge, 1988 (Roberts, D. A., ed), 233–244. Museum Documentation Association.

    Google Scholar 

  26. Greenberg, J. (1993). Intellectual control of visual archives: a comparison between the Art and Architecture Thesaurus and the Library of Congress Thesaurus for Graphic Materials. Cataloging & Classification Quarterly, 16(1):85–101.

    Article  Google Scholar 

  27. Gudivada, V. N. and Raghavan, V. V. (1995). Guest editors’ introduction: 5Content-based image retrieval systems. Computer, 28(9):18–22.

    Article  Google Scholar 

  28. Gudivada, V. N. and Raghavan, V. V. (1995). Design and evaluation of algorithms for image retrieval by spatial similarity. ACM Trans. on Information Systems, 13(2):115–144.

    Article  Google Scholar 

  29. Gupta, A. et al (1996). The Virage image search engine: an open framework for image management. in Storage and Retrieval for Image and Video Databases IV, Proc SPIE 2670:76–87.

    Google Scholar 

  30. Haralick, R. M. et al (1973). Textrual features for image classification. IEEE Transactions on Systems Man and Cybernetics, 3(6):610–621.

    Article  MathSciNet  Google Scholar 

  31. Hastings, S. K. (1995). Query categories in a study of intellectual access to digitized art images. ASIS’ 95: proceedings of the 58th ASIS Annual Meeting, 32:3–8.

    Google Scholar 

  32. Hou, Y. T. et al (1992). A content-based indexing technique using relative geometry features. in Image Storage and Retrieval Systems, Proc SPIE 1662:59–68.

    Google Scholar 

  33. Hu, M. K. (1962). Visual pattern recognition by moment invariants. IRE Trans-actions on Information Theory, IT-8: 179–187.

    Google Scholar 

  34. Huang, T. et al (1997). Multimedia Analysis and Retrieval System (MARS) project in Digital Image Access and Retrieval. 1996 Clinic on Library Applications of Data Processing (Heidorn, P. B. and Sandore, B, eds), 101–117. Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign.

    Google Scholar 

  35. Ingwersen, P. (1996). Cognitive perspectives of information retrieval interaction: elements of a cognitive IR theory. Journal of Documentation, 52(1):3–50.

    Article  Google Scholar 

  36. Jacobs, C. E. et al (1995). Fast Multiresolution Image Querying. Proceedings of SIGGRAPH 95, Los Angeles, CA (ACM SIGGRAPH Annual Conference Series, 1995), 277–286.

    Google Scholar 

  37. Jaimes, A. and Chang S. F. (1999). Model-based classiffication of visual information for content-based retrieval. in Storage and Retrieval for Image and Video Databases VII, Proc SPIE 3656:402–414.

    Google Scholar 

  38. Jain, A. K. et al (1996). Object matching using deformable templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(3):267–277.

    Article  Google Scholar 

  39. Jain, A. K. and Vailaya (1996). A Image retrieval using color and shape. Pattern Recognition, 29(8):1233–1244.

    Article  Google Scholar 

  40. Jin, J. S. et al (1998). Using browsing to improve content-based image retrieval in Multimedia Storage and Archiving Systems III, Proc SPIE 3527:101–109.

    Google Scholar 

  41. Keister, L. H. (1994). User types and queries: impact on image access systems in Challenges in indexing electronic text and images (Fidel, R. et al., eds). ASIS, 7–2

    Google Scholar 

  42. Kim, Y. S. and Kim, W. Y. (1998). Content-based trademark retrieval system using a visually salient feature. Image and Vision Computing, 16:931–939.

    Article  Google Scholar 

  43. Kurniawati, R. et al (1997). The SS+ tree: an improved index structure for similar-ity searches in high-dimensional feature space. in Storage and Retrieval for Image and Video Databases V(Sethi, I. K. and Jain, R. C., eds), Proc SPIE 3022:110–120.

    Google Scholar 

  44. Lee, D. et al (1994). Query by image content using multiple objects and multiple features: user interface issues. in Proceedings of ICIP-94, International Conference on Image Processing, Austin, Texas, 76–80.

    Google Scholar 

  45. Lee, C. S. et al (1999). Information embedding based on users’ relevance feed-back for image retrieval. in Multimedia Storage and Archiving Systems IV (S Panchanathan et al, eds), Proc SPIE 3846:294–304.

    Google Scholar 

  46. Leung, T. and Malik J. (1999). Recognizing surfaces using three-dimensional tex-tons. presented at Seventh IEEE International Conference on Computer Vision (ICCV-99), Corfu, Greece, 2:1010–1017.

    Google Scholar 

  47. Levine, M. D. (1985). Vision in man and machine, ch 10. McGraw-Hill, NY

    Google Scholar 

  48. Lewis, P. H. et al (1996). Media-based navigation with generic links. in Proceedings of the Seventh ACM Conference on Hypertext, New York, 215–223.

    Google Scholar 

  49. Lewis, P. H. et al (1997). Towards multimedia thesaurus support for media-based navigation. in Image Databases and Multimedia Search, (Smeulders, A. W. M. and Jain, R. C., eds), 111–118. World Scientific, Amsterdam

    Google Scholar 

  50. Lin, K.I., Jagadish, H. V., and Faloutsos, C. (1994). The TV-tree — an index struc-ture for high-dimensional data. VLDB Journal: Special Issue on Spatial Database Systems, 3(4):517–542.

    Google Scholar 

  51. Liu, F. and Picard, R. W. (1996). Periodicity, directionality and randomness: Wold features for image modeling and retrieval. IEEE Trans. Pattern Analysis and Machine Intelligence, 18(7):722–733.

    Article  Google Scholar 

  52. Ma, W.Y. and Manjunath, B. S. (1997). NeTra: A toolbox for navigating large image databases. In Proc. of the IEEE Int. Conf. on Image Processing, 562–571.

    Google Scholar 

  53. Ma, W. Y. and Manjunath, B. S. (1998). A texture thesaurus for browsing large aerial photographs. Journal of the American Society for Information Science 49(7):633–648.

    Article  Google Scholar 

  54. Manjunath, B. S. and Ma, W.-Y. (1996). Texture features for browsing and re-trieval of image data. IEEE Trans. Pattern Analysis and Machine Intelligence, 18(8):837–42.

    Article  Google Scholar 

  55. Manmatha, R. and avela, S. (1997). A syntactic characterization of appearance and its application to image retrieval. in Human Vision and Electronic Imaging II (owitz BE and Pappas TN eds), SPIE 3016, 484–95.

    Google Scholar 

  56. Markey, K. (1984). Interindexer consistency tests: a literature review and report of a test of consistency in indexing visual materials. Library and Information Science Research, 6:155–77.

    Google Scholar 

  57. Markkula, M. and Sormunen, E. (1998). Searching for photos-journalists’ practices in pictorial IR. presented at The Challenge of Image Retrieval research workshop, Newcastle upon Tyne, February 1998.

    Google Scholar 

  58. Mehrotra, R. and Gary J. E. (1995). Similar-shape retrieval in shape data man-agement. IEEE Computer, 28(9):57–62.

    Google Scholar 

  59. Minka, T. (1996). An image database browser that learns from user interaction.MIT Media Laboratory Technical Report, #365.

    Google Scholar 

  60. Nastar, C. et al (1998). Surfimage: a flexible content-based image retrieval system presented at ACM Multimedia’ 98, Bristol, UK.

    Google Scholar 

  61. Niblack, W. et al (1998). Updates to the QBIC system. in Storage and Retrieval for Image and Video Databases VI(Sethi, I. K. and Jain, R. C., eds), Proc SPIE 3312, 150–161.

    Google Scholar 

  62. Ogle, V. E. and Stonebraker, M. (1995). CHABOT: Retrieval from a relational database of images. IEEE Computer, 28(9):40–48.

    Google Scholar 

  63. Oliva, A. et al (1999). Global semantic classification of scenes using power spectrum templates. presented at CIR-99: The Challenge of Image Retrieval, Newcastle upon Tyne, UK, February 1999.

    Google Scholar 

  64. Opitz, H. et al (1969). Workpiece classification and its industrial application.International Journal of Machine Tool Design Research, 9:39–50.

    Article  Google Scholar 

  65. Paquet, E. and Rioux, M. (1998). Content-based access of VRML libraries Lecture Notes in Computer Science 1464:20–32.

    Google Scholar 

  66. Pentland, A. et al (1996). Photobook: tools for content-based manipulation of image databases. International Journal of Computer Vision, 18(3)233–254.

    Article  Google Scholar 

  67. Ravela, S. and Manmatha, R. (1998a). Retrieving images by appearance. in Pro-ceedings of IEEE International Conference on Computer Vision (IICV98), Bombay, India, 608–613.

    Google Scholar 

  68. Ravela, S. and Manmatha, R. (1998). On computing global similarity in images. in Proceedings of IEEE Workshop on Applications of Computer Vision (WACV98), Princeton, NJ, 82–87.

    Google Scholar 

  69. Ren, M. et al (2000). Human perception of trademark images: implications for retrieval system design. Journal of Electronic Imaging, in press.

    Google Scholar 

  70. Rui, Y. et al (1997). Relevance feedback techniques in interactive content-based image retrieval. in Storage and Retrieval for Image and Video Databases VI(Sethi, I. K. and Jain, R. C., eds), Proc SPIE 3312: 25–36.

    Google Scholar 

  71. Rui, Y., Huang, T. S., Ortega, M., and Mehrotra, S. (1998). Relevance feedback: A power tool in interactive content-based image retrieval. IEEE Tran on Circuits and Systems for Video Technology, 8(5):644–655.

    Article  Google Scholar 

  72. Santini, S. and Jain, R. (1997). Do images mean anything? In Proc. of the Int. Conf. on Image Analysis and Processing, ICIP-97, 564–567.

    Google Scholar 

  73. Scassellati, B. et al (1994). Retrieving images by 2-D shape: a comparison of computation methods with human perceptual judgements. in Storage and Retrieval for Image and Video Databases II (Niblack, W. R. and Jain, R. C., eds), Proc SPIE2185:2–14.

    Google Scholar 

  74. Schiele, B. and Crowley J. L. (1997). The concept of visual classes for object classification. in Proceedings of SCIA’97, Tenth Scandinavian Conference on Image Analysis, Lappeenranta, Finland, 43–50.

    Google Scholar 

  75. Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, in press.

    Google Scholar 

  76. Smith, J. R. and Chang S. F. (1994). Transform features for texture classifica-tion and discrimination in large image databases. in Proceedings ICIP-94, Austin,Texas, 407–411.

    Google Scholar 

  77. Smith, J. R. and Chang S. F. (1997a). Querying by color regions using the Visu-alSEEk content-based visual query system. Intelligent Multimedia Information Retrieval (Maybury, M. T., ed). AAAI Press, Menlo Park, CA, 23–41.

    Google Scholar 

  78. Smith, J. R. and Chang S. F. (1997b). An image and video search engine for the World-Wide Web. in Storage and Retrieval for Image and Video Databases V (Sethi, I. K. and Jain, R. C., eds), Proc SPIE 3022:84–95.

    Google Scholar 

  79. Srihari, R. K. (1995). Automatic indexing and content-based retrieval of captioned images. IEEE Computer, 28(9):49–56.

    Google Scholar 

  80. Stark, H-G (1996). On image retrieval with wavelets. International Journal of Imaging Systems and Technology, 7:200–210.

    Article  Google Scholar 

  81. Stricker, M. and Dimai, A. (1996). Color indexing with weak spatial constraints in Storage and Retrieval for Image and Video Databases IV (Sethi, I. K. and Jain, R. C., eds), Proc SPIE 2670:29–4.

    Google Scholar 

  82. Stricker, M. and Orengo, M. (1995). Similarity of color images. in Storage and Retrieval for Image and Video Databases III (Niblack, W. R. and Jain, R. C., eds), Proc SPIE 2420:381–392.

    Google Scholar 

  83. Swain, M. J. and Ballard, D. H. (1991). Color indexing. International Journal of Computer Vision, 7(1):11–32.

    Article  Google Scholar 

  84. Szummer, M. and Picard, R. (1998). Indoor-outdoor image classification. in IEEE International Workshop on Content-based Access of Image and Video Databases (CAIVD98), Bombay, India, 42–51.

    Google Scholar 

  85. Tamura, H., Mori, S., and Yamawaki, T. (1978). Texture features corresponding to visual perception. IEEE Trans. on Systems, Man, and Cybernetics, 8(6):460–473.

    Article  Google Scholar 

  86. Teh, C. H. and Chin, R. T. (1988). Image analysis by methods of moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4):496–513.

    Article  MATH  Google Scholar 

  87. Vailaya, A. et al (1998). On image classification: city images vs landscapes. Pattern Recognition, 31(12):921–1936.

    Article  Google Scholar 

  88. Vailaya, A. and Jain, A. K. (1999). Incremental learning for Bayesian classification of images. presented at IEEE International Conference on Image Processing (ICIP’99), Kobe, Japan, October 1999.

    Google Scholar 

  89. Vleugels, J. and Veltkamp, R. (1999). Efficient image retrieval through vantage objects. presented at VISUAL99: 3rd International Conference on Visual Inform-ation and Information Systems. Lecture Notes in Computer Science 1614:769–776.

    Google Scholar 

  90. Wactlar, H. D. et al (1996). Intelligent access to digital video: the Informedia project. IEEE Computer, 29(5):46–52.

    Google Scholar 

  91. Zahn, C. T. and Roskies, C. Z. (1972). Fourier descriptor for plane closed curves.IEEE Transactions on Computers, C-21:269–281.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eakins, J.P. (2000). Retrieval of Still Images by Content. In: Agosti, M., Crestani, F., Pasi, G. (eds) Lectures on Information Retrieval. ESSIR 2000. Lecture Notes in Computer Science, vol 1980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45368-7_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-45368-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41933-4

  • Online ISBN: 978-3-540-45368-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics