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Abstract. Since the introduction of association rules, many algorithms
have been developed to perform the computationally very intensive task
of association rule mining. During recent years there has been the ten-
dency in research to concentrate on developing algorithms for specialized
tasks, e.g. for mining optimized rules or incrementally updating rule sets.
Here we return to the “classic” problem, namely the efficient generation
of all association rules that exist in a given set of transactions with re-
spect to minimum support and minimum confidence. From our point of
view, the performance problem concerning this task is still not adequa-
tely solved.
In this paper we address two topics: First of all, today there is no satis-
fying comparison of the common algorithms. Therefore we identify the
fundamental strategies of association rule mining and present a gene-
ral framework that is independent of any particular approach and its
implementation. Based on this we carefully analyze the algorithms. We
explain differences and similarities in performance behavior and com-
plete our theoretic insights by runtime experiments. Second, the results
are quite surprising and enable us to derive a new algorithm. This ap-
proach avoids the identified pitfalls and at the same time profits from the
strengths of known approaches. It turns out that it achieves remarkably
better runtimes than the previous algorithms.

1 Introduction

Association rules were introduced in [1]. The intuitive meaning of such rules
X ⇒ Y , where X, Y are sets of items, is that a transaction containing X is likely
to also contain Y . The prototypical application is the analysis of basket data
where rules like “p% of all customers who buy {x1, x2, . . . } also buy {y1, y2, . . . }”
are found. Our paper deals with the “classic” mining of associations. That is,
the mining of all rules that exist in a given database with respect to thresholds
on support and confidence. We assume transactions that are typical for retail
applications, i.e. transactions containing between 10 to 20 items on average and
items out of I with |I| ≈ 1, 000 − 100, 000. Several algorithms for association
rule mining have been developed, e.g. Apriori [2], Partition [9], DIC [4], and
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Eclat [11], but finally from our point of view the performance problem is still
not satisfyingly solved. Especially in the context of an interactive KDD-process,
c.f. [5], performance is still a remaining problem.

Although the algorithms share basic ideas they fundamentally differ in cer-
tain aspects and this is also true for their runtime performance. Unfortunately
today there is no exhaustive comparison of at least the most important of the
algorithms concerning the fundamental ideas behind them or their different run-
time behavior. Both topics are addressed in this paper. Moreover based on the
insights of our study we derive a new algorithm that remarkably reduces runti-
mes compared to the previous approaches.

The paper is structured as follows: In Section 2 we identify the general stra-
tegies of association rule mining. The overview given is independent of any par-
ticular algorithm and its implementation. In Section 3, we systematize the most
common algorithms by putting them into the general framework developed in the
section before. In addition we show several performance evaluations that, from
our point of view, are quite surprising. After that we come to the main part of
this section, the detailed explanation of the different runtimes. In Section 4, we
deploy the insights from the previous sections and introduce a hybrid algorithm.
This algorithm avoids the identified pitfalls and at the same time profits from
the recognized strengths of the fundamental strategies. We conclude with per-
formance studies that show the efficiency of this new algorithm. Finally we give
a short summary and close with interesting topics for future research.

2 Identifying Fundamental Strategies of Association Rule
Mining

2.1 Problem Description

Let I = {x1, . . . , xn} be a set of distinct items. A set X ⊆ I with |X| = k is
said to be a k-itemset or just an itemset. Let D be a multi-set of transactions
T , T ⊆ I. A transaction T supports an itemset X if X ⊆ T . The fraction of
transactions from D that support X is called the support of X, denoted by
supp(X). An association rule is an implication X ⇒ Y , where X, Y ⊆ I and
X ∩ Y = ∅. In addition to supp(X ⇒ Y ) = supp(X ∪ Y ) every rule is assigned a
confidence conf(X ⇒ Y ) = supp(X ∪Y )/supp(X), c.f. [2]. An itemset X is called
frequent if supp(X) ≥ minsupp. For the purpose of association rule generation it
suffices to find all frequent itemsets, c.f. [2].

2.2 Search Strategies

Except the empty set the lattice of all 2|I| subsets of the itemset I are shown in
Figure 1(a). The bold line is an example of actual itemset support and separates
the frequent itemsets in the upper part from the infrequent ones in the lower
part. Obviously the search space is exponentially growing with |I|. It is therefore
not practicable to determine the support of each of the subsets of I in order to
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Fig. 1. Subsets of I = {1, 2, 3, 4}

decide whether it is frequent or not. Instead, the idea is to traverse the lattice in
such a way that all frequent itemsets are found but as few infrequent itemsets
as possible are visited. To achieve this the downward closure property of itemset
support is employed: All subsets of a frequent itemset are also frequent.

In Figure 1(b) a tree on the itemsets is shown: The nodes are the classes
E(P ), P ⊆ I, E(P ) = {H ⊆ I | |H| = |P | + 1 and P is a “prefix” of H}, where
the sets are represented as ordered lists, c.f. [6] for precise formalization. Two
nodes are connected by an edge, if all itemsets of the lower class can be generated
by joining two itemsets of the upper class. A class E and its descendants only
contain frequent itemsets if the parent class E′ of E contains at least two frequent
itemsets. That is, whenever we encounter a class E that contains less than two
frequent itemsets than we are allowed to prune all branches starting in node E
without accidentally missing any of the frequent itemsets.

With that pruning, we drastically reduce the search space and moreover we
are free to choose the strategy – typically breadth-first search (BFS) or depth-
first search (DFS) – to traverse the classes of the lattice, respectively the nodes
of the tree.

2.3 Counting Strategies

When traversing the search space, i.e. the subsets of I, we always have to check
whether or not potential frequent itemsets achieve minsupp. We call these item-
sets candidates and counting their support is done in two fundamentally different
ways:

The first strategy is to count the occurrences of the candidates by setting up
counters and then pass over all transactions. Whenever one of the candidates is
contained in a transaction, we increment its counter.
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The second strategy indirectly counts the support of candidates by intersec-
ting sets. This requires for every itemset that the set of transactions containing
this itemset is provided. Such tid-sets are denoted by X.tids. The support of a
candidate C = X ∪Y is obtained by the intersection C.tids = X.tids∩Y.tids and
evaluating |C.tids|.

3 Analysis of the Algorithms

3.1 Algorithms

In this subsection we put the most common algorithms into the general frame-
work that we identified in the previous section:

Apriori [2] is the very first efficient algorithm to mine association rules. Ba-
sically it combines BFS with counting of occurrences of candidates. In addition,
it employs the following: When using BFS all frequent itemsets at level s of the
tree (c.f. Figure 1(b)) are known when starting to count candidates at level s+1.
Together with the downward closure property of itemset support, this enables
Apriori to do additional pruning: Look at all the subsets of size |C| − 1 of can-
didate C and whenever there is at least one of those infrequent, then prune C
without counting its support.

Partition [9] combines the Apriori approach with set intersections instead of
counting occurrences. That is, Partition also checks the subsets of each candidate
for frequency before actually determining its support. In addition, Partition
“partitions” the database in several chunks. This is necessary because otherwise
the memory usage of the tid-sets to be held simultaneously in main memory
would easily grow beyond the physical limitations of common machines.

DIC [4] is an extension of Apriori that aims at minimizing the number of
database passes. The idea is to relax the strict separation between generating and
counting of candidates: During counting DIC looks for candidates that already
achieve minsupp though their final support may still not be determined. Based
on these DIC generates new candidates and immediately starts counting them.

In contrast, Eclat [11] relies on DFS instead of BFS. With that, Eclat does
not need to partition even huge databases although it counts the support va-
lues by intersections. The reason is that only the tid-sets of the itemsets on one
path from the root down to one of the leaves have to be kept in memory simul-
taneously. But there is a draw back not described in [11]: DFS implies that in
general Eclat cannot prune candidates by looking at their subsets. That is, Eclat
does not fully realize the so called apriori gen()-function. The reason is that basic
DFS descends from the root to the leaves of the tree without caring about any
subset relation among the itemsets. [11] introduces an important optimization
they call “fast intersections”. In brief only tid-sets that achieve a size greater
than minimum support are of relevance. The idea is to immediately stop an
intersection as soon as it is foreseeable that it will never reach this threshold.
Eclat as introduced in [11] presumes the frequent itemsets of size 1 and 2 to be
known. I.e. Eclat starts at level 3 in the tree. In order to make a fair runtime
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comparison of Eclat with the other algorithms, we modify Eclat to also start
at level 1. This is straight forward to implement by simply calling Eclat on the
class consisting of all frequent 1-itemsets.

None of the above algorithms combines counting occurrences with DFS. The
reason is evident when considering how counting occurrences actually works:
First, a set of candidates is set up, second, the algorithm passes all transactions
and increments the counters of the candidates. That is, for each set of candidates
one pass over all transactions is necessary. With BFS such a pass is needed for
each of level s of the tree as long as there exists at least one candidate of size
s. In contrast, DFS would make a separate pass necessary for each class that
contains at least one candidate. The costs for each pass over the whole database
would contrast with the relatively small number of candidates counted in the
pass.

3.2 Performance Studies

We performed the experiments on an Pentium III Linux machine, running at
500Mhz, and C++-implementations of the algorithms. The experiments and da-
tasets were taken from [2,9]. The naming convention of the datasets reflects their
basic characteristics, e.g. “T20.I4.D100K” is a dataset with average transaction
size of 20, average frequent itemset size of 4, and consisting of 100, 000 transac-
tions. The test sets were generated with the dataset generator from [8]. The num-
ber of items was always set to 1, 000 and the number patterns always to 2, 000.
In addition to [2,9], we experimented with different restrictions on the maximal
size of the generated frequent itemsets based on the dataset “T20.I4.D100K” at
minsupp 0.33%.

3.3 Comparing the Algorithms

In Figure 2 the algorithms show quite similar runtime behaviors. At least there is
no algorithm fundamentally beating out the other ones. This is quite surprising,
especially with regard to former publications. To explain this, we start with some
general thoughts on performance issues concerning the strategies described in
Section 2.

The influence of the search strategy is relatively small. Only the fact that
DFS does not allow proper candidate pruning by subset checking makes BFS
somewhat superior to DFS. But we must keep in mind that checking subsets
might be costly, especially for larger itemsets. In addition, it makes only sense
for itemsets of a size greater than 2. But as Figure 2(d) and [7] show, the time
spent with the itemsets of size 2 may dominate the whole generation process.

Counting occurrences is usually done by using a hashtree, c.f. [2]. Counting a
candidate that occurs rather infrequently is quite cheap. Costs are only caused
by the actual occurrences of the candidate in the transactions. In contrast, whe-
never incrementing the candidate size by one the hashtree grows one level. I.e.,
especially for larger candidate sizes – caused by the characteristics of the data-
set or by smaller values for minsupp – counting can get fairly expensive. At the
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Fig. 2. Execution Times on Synthetic Data

same time, the size of the candidates has no influence when using intersections.
No matter how long the candidates are only the sizes of their tid-sets count.
Of course, there is also a drawback: The costs for an intersection are at least
min{|X.tids|, |Y.tids|} operations regardless of the actual number of occurrences
of the candidate X

⋃
Y .1

As to be expected Partition2 and Eclat show very similar runtimes, with Eclat
beating Partition by a fairly constant factor. The reason is that Partition does
not employ “fast intersections”. The effect of the additional candidate pruning
employed by Partition is not able to compensate this disadvantage. In fact,

1 “Fast intersections” reduce the costs but are also not directly bound by the number
of occurrences of a candidate.

2 We were always able to skip the partitioning step, because our machine is equipped
with sufficient main memory.
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when enhancing Partition with “fast intersections” we experienced that both
algorithms reach about the same runtimes.

As a surprise the behavior of Apriori is also very similar to that of the tids-
intersecting algorithms. On first sight this seems to contradict to the results in
[9] where Partition is shown to outperform Apriori. Actually, in [9] at minsupp ≈
0.75% the runtimes of Apriori start to grow fundamentally whereas the behavior
of Partition does not change. Our Apriori implementation, that uses an optimized
structure to count candidate 2-itemsets does not show this behavior.3 Partition
clearly outperforms Apriori only on “T20.I6.D100K”. This is due to the higher
average size of candidate itemsets found in this dataset. Higher average sizes are
also caused by lowering minsupp. Due to this the runtime of Apriori compared
to Partition suffers at very low support thresholds.

The above holds also for Eclat that in addition profits from the “fast in-
tersections”. But most of the time Apriori still outperforms Eclat. This seems
to contradict the experiences in [11], but in [11] only itemsets of size ≥ 3 are
generated. As justified before, for our experiments we modified Eclat to mine
also frequent 1- and 2-itemsets.

We left out DIC in the charts, because our very first experiments were quite
discouraging. Even DIC that passes all transactions before generating candida-
tes, that is DIC that “should be” Apriori, performed badly. We finally realized
that replacing the hashtree with the structure from [4] has two draw backs: First,
considering only the frequent items when setting up the hashtables in nodes of
the hashtree is no longer possible. Second, in contrast to the hashtree used in
[2] a prefix tree does not group itemsets sharing a common prefix in its leaves
but each itemset and each of its subsets is represented by a node of its own.
Both properties lead to a tremendous growth of memory usage. In addition,
when counting candidates with the modified hashtree each of the already coun-
ted frequent itemsets causes overhead no matter whether it yields to a candidate
or not. In contrast Apriori keeps the candidates separated. Actually even when
overcoming both, DIC only showed an improvement of less than ≈ 30% over
Apriori but no fundamental different behavior on basket data in [4].

The surprisingly similar behavior of the considered algorithms shows that
the advantages and disadvantages identified in the beginning of this subsection
balance out on market basket-like data. This is also supported by Figure 2(d).

4 New Approach

4.1 Hybrid Approach

The performance studies and explanations of the results in the previous section
suggest the development of a hybrid approach. The idea is to count occurrences
whenever determining the support values of relatively small candidates and to
rely on tid-set intersections for the remaining candidates. Of course this implies

3 Replacing the hashtree for candidates of size 2 with an array is suggested in [10]
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additional costs for generating the tid-sets when switching between the two coun-
ting strategies. For this purpose we use a hashtree-like structure that contains
pointers to tid-sets instead of counters.

On the one hand with BFS the hybrid algorithm would suffer from memory
problems when using tid-sets intersections. At least a costly mechanism like par-
titioning the database would be needed. On the other hand using DFS would
elegantly solve this problem but when starting to count occurrences the run-
time of our algorithm would suffer substantially, c.f. Section 3.1. The solution
is to switch from BFS to DFS when switching from counting occurrences to
intersections.

(1) algorithm hybrid(transactions, sw, minsupp)
(2) {
(3) frequent itemsets[1] = get frequent items(transactions, minsupp);
(4) // BFS together with counting occurrences:
(5) for(s = 2; s ≤ sw;++s)
(6) {
(7) candidates = generate candidates(frequent itemsets[s − 1]);
(8) count candidates(candidates, transactions);
(9) frequent itemsets[s] = get frequent itemsets(candidates, minsupp);
(10) }
(11) // DFS together with tid-set intersections:
(12) for each class ∈ frequent itemsets[s-1] do
(13) {
(14) class with tid-sets = generate tid-sets(class, transactions);
(15) depth-first search(class with tid-sets, minsupp);
(16) }
(17) }

Fig. 3. Hybrid Algorithm

The finally resulting algorithm Hybrid is sketched in Figure 3. The argument
sw determines when to change the counting strategy. As explained basic DFS
does not allow candidate pruning by infrequent subsets. To overcome this we
employ right-most DFS from [6].

4.2 Evaluation

We repeated our experiments with two versions of our hybrid algorithm. One
switching at candidate size 2 and the other at size 3, c.f. Figure 4. Moreover
we made experiments on real-world data from a supermarket with about 60, 000
items in roughly 70, 000 transactions. The new algorithm performs best in nearly
all cases and shows the anticipated behavior. This is most obvious in Figure 4(e)
where Hybrid shows the smooth rise for the 2-, 3- and to some extend 4-itemsets
of Apriori combined with the ability of Eclat to mine frequentent itemsets of
size ≥ 4 at hardly any additional effort. The generation of the tid-sets that takes
place at sw is efficiently solved by the modified hashtree. Nevertheless a very
small average size of frequent itemsets let the algorithm suffer.
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5 Summary

In this paper we addressed the “classic” association rule problem, i.e. the gene-
ration of all association rules that exist in a given set of transactions with regard
to minsupp and minconf. We identified the fundamental strategies of association
rule mining and derived a general framework that is independent of any particu-
lar algorithm. Based on this we analyzed the performance of todays approaches
both theoretically and by carrying out experiments. The results were quite sur-
prising. In addition, our insights lead to the development of a new approach.
The resulting algorithm Hybrid exploits the strengths of the known approaches
and at the same time avoids their weaknesses. It turns out that in general for
the “classic” association rule problem our algorithm achieves remarkably better
runtimes than the previous approaches.

Our future research we will focus on the following: We want to explore how
the approaches behave when mining databases that fundamentally differ from
retail databases, e.g. dense datasets [3]. In addition, the aspects of memory usage
are still not exhaustively studied. In fact memory usage is closely related to
runtime because all the described algorithms suffer substantially when physical
memory is exhausted and parts of the memory are paged out to disk.
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