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Abstract. Relational representation of objects using graphs reveals much
information that cannot be obtained by attribute value representations alone.
There are already many databases that incorporate graph expressions. We focus
on syntactic trees in language sentences, and we attempt to mine characteristic
subgraph patterns. The mining process employs two methods: relative indexing
of graph vertices and the cascade model. The former extracts many linear
subgraphs from the database. An instance is then represented by a set of items,
each of which indicates whether a specific linear subgraph is contained within
the graph of the instance. The cascade model is a rule induction method that
uses levelwise expansion of a lattice. The basic assumption of this mining
process is that characteristic subgraphs may be well represented by the
concurrent appearance of linear subgraphs. The resulting rules are shown to be
a good guide for obtaining valuable knowledge in linguistics.

1 Introduction

Structured objects can be represented very effectively by using graphs. Graphs can
express general relationships in data that cannot be obtained by the usual attribute
value expressions, and many databases therefore incorporate graph representations.
For example, the structural formulae in chemistry, syntactic trees in natural language,
and circuits in engineering all use graphs. We put our focus on the mining method
applicable to all of these graph-structured objects.

Recently, interest in graph-structured objects has increased in the fields of machine
learning and data mining; there has been work on GBI (graph based induction) [1],
ILP (inductive logic programming) [2], and the association rule for graphs [3, 4]. ILP
has been applied to SAR (structure activity relationships) problems in chemistry and
shown useful [5]. However, these methods have not sufficiently considered all
respects of universal validity, applicability to a variety of problems, and required
computational resources, and there is a need for a new, efficient method.

The principal aim of this paper is to propose a mining scheme that is generally
applicable to different kinds of graph-structured objects. Section 2 explains the new
mining process, which consists of item generation and application of the cascade
model. In Section 3, the procedure is applied to the analysis of syntactic parse trees in
a corpus, and we can get reasonable results. The method has also shown its usefulness
in a preliminary study on the mutagenicity of chemical compounds [6].
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2 Mining Methods

2.1 General Scheme

We propose a mining scheme that consists of two steps. In the first, we generate
thousands of attributes from a set of instance graphs; each attribute denotes whether a
specific subgraph is contained within the graph. The method of relative indexing of
vertices restricts the subgraphs to linear types without branching, and provides an
affordable number of attributes. Each graph can then be described as a tuple in a table
with thousands of columns. Other properties of a graph can be included as an attribute
of the table.

The second step is to find dependencies among attributes. There are many possible
methods; we can employ a decision tree to derive classification rules for some
attributes. Alternatively, the subgraph patterns of a graph could be regarded as items
in a basket and the association rules method could be applied. In this paper, we
employ the cascade model to derive rule expressions. We chose this model because it
is able to derive characteristic, and/or classification, rules in a single unified
framework, with a pruning method that can suppress combinatorial explosion of
lattice size, even with high item density.

The resulting rules can act as a guide in extracting valuable knowledge from a
database. The rules are expressed not by the target subgraph, but by the concurrent
appearance of plural linear subgraphs that are interpreted to provide knowledge.

2.2 Relative Indexing of Graph Vertices

Our method can be explained as follows, using a syntactic tree as an example.
Suppose that we wish to find characteristic patterns in the syntactic tree associated
with the verb “think”.  An example of the tree is shown in Figure 1; it contains 8 leaf
vertices and 6 non-leaf vertices.

If we extract all possible subgraphs from this kind of trees, the number of attributes
will be too large for most mining methods to handle, and we therefore need to impose
some restrictions on the subgraph pattern. To do so, we introduce a new scheme: the

Word Part of
speech

Index

.2./.1
she PRON 1./.2.1
is BE 1./.2.2.1
an ART 1./.2.2.2.1

intelligent ADJ 1./.2.2.2.2
woman NOUN 1./.2.2.2.3

. (period) PUNC 1.2.1./.2

PRON  VT   PRON BE ART   ADJ         NOUN  PUNC
    I   think  she   is  an intelligent woman  .

Fig. 1. Sample syntactic tree.

Table 1. Leaf vertices and relative indices.
I PRON 1
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relative indexing of graph vertices. This scheme assumes that a subgraph is linear and
consists of two parts.

• Two meaningful vertices.
• The relationship between the two vertices.

We can fix one of the two meaningful vertices to the leaf vertex, [VT: think], as our
aim is to analyze the syntactic pattern based on its usage. As the non-leaf vertices in
this tree possess no valuable information except topology, we can restrict the source
of the other meaningful vertex to the leaf vertices. Therefore, the attributes employed
are the 7 subgraphs between "think" and 7 leaf nodes, as shown in Table 1.

The next problem is the expression of the relationship between the selected leaf
vertices. As the resulting rules are depicted using these expressions, we expect the
original graph structure to recover as much as possible from the attributes’ expression.
The syntactic tree is an ordered tree and the edges branching from a vertex can be
numbered. Therefore, we assign a relative index to each leaf node, as shown in the
last column of Table 1. The relative index of the word "I" is given by "1.2./.1", where
"/" indicates the root vertex of the minimum subtree containing the two words, as
shown in Figure 2. Starting from the position of "/", the numbers on the left (right)
side, delimited by periods, indicate the sequence of edge indices to the word "think"
("I"). Here, we have assigned the edge index 1 to the leftmost edge. The resulting
relative index is given by concatenating the two indices to "think" and "I".

We can define a unique relative index for any vertex. Consequently, we can
recover the relative positions of the words from the index unambiguously. However,
this indexing scheme may require modification, depending on the problem
considered. For example, when treating chemical compounds, the edges in a graph are
not ordered, and therefore we cannot give an unambiguous index between a pair of
vertices.

The characteristic subgraph that is to be
mined may very well be a general graph that
cannot be represented as a linear graph. There is
then the question as to whether a set of generated
linear subgraphs can stand in for a general
subgraph in the representation of a rule, and this
is the core point by which to judge the current
method. We anticipate that in most cases the
concurrent appearance of linear subgraphs in a
rule can substitute for a general subgraph. We
inspect this hypothesis later in this paper.

2.3 The Cascade Model

The cascade model was originally proposed by Okada [7]. It can be considered as an
extension of association rule mining. The method creates an itemset lattice, where
[attribute:•value] pairs are employed as items that constitute itemsets. Links in the
lattice are selected and expressed as rules, by examining the distribution of the RHS
attribute values along all the links. A sudden change of distribution along a link will
bring the two terminal nodes of that link into focus. Suppose that the itemset at the

PRO N          VT  
    I         think

2./

1.2./

/

/1.
2

2

1

1

Fig. 2. Relative indexing between
"think" and "I".
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upper end of a link is [A: y], and that an item [B: n] is added along the link. If a sharp
increase in [C: y] is then found along this link, we can write a rule with the following
expression:

IF [B: n] added on [A: y] THEN [C: y]

where the added item [B: n] is the main condition of the rule, and the items on the
upper end of the link ( [A: y] ) are considered as the preconditions. Any number of
items can be put into the RHS of a rule if its distribution shows a strong interaction
with the main condition.

Subsequently, the sum of squares criterion for categorical data was introduced to
improve the definition of rule strength [8]. The formulation of the model was also
extended to cover the mining of classification rules and characteristic rules in a
unified framework. The problem of combinatorial explosion in the number of lattice
nodes was also resolved by a new pruning methodology [9]. The cascade model is
implemented as DISCAS software using lisp, and it is used in this work.

3. Application to Syntactic Trees

3.1 Problem Definition and Computation

Mining from corpus data may lead to new knowledge in linguistics, which may be
reflected in improvements in natural language processing. We used the Electronic
Dictionary Research (EDR) English corpus, which contains 160,000 sentences, with
syntactic tree data for each [10]. As an example, we extracted sentences containing
the verb "think" and tried to find characteristic patterns that were associated with this
word. Among the 1,001 sentences retrieved, there were 134 and 867 sentences that
contained VI (intransitive verb) and VT (transitive verb), respectively.

The corpus treats all blanks between words in a sentence as a special kind of word;
we omitted these blanks to simplify the trees. There is a linguistic tag on every non-
leaf vertex in the tree of this corpus, but it proved too difficult to interpret these tags
and we were forced to omit them. After preprocessing, the resulting tree had the
structure shown in Figure 1. The details of the corpus data, including definition of
parts of speech, can be accessed over the Internet [10].

Generating an attribute using the scheme in Section 2.2 provides the option of
using another indexing scheme through numbering the edges from right to left. As
there is no reason to prefer one indexing scheme to the other, we employed both
schemes to generate relative indices. The attribute format was set to the concatenation
of the index and the part of speech columns in Table 1. Using the two indexing
schemes, every word except "think" generates two attribute records. The number of
records created from 1001 sentences was 28010, of which 10469 were recognized as
different. The verb class, VI or VT, was also added as an attribute.

The cascade model was used to mine for characteristic rules, using the parameter
values (minsup: 0.05, thres: 0.05, thr-BSS: 0.05) [9]. The pruning condition defined
by the thres value can eliminate most attributes from the actual computation, and in
this case left only 29 attributes for construction of the lattice. That is, if the two values
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y and n of an attribute have a very unbalanced distribution they do not contribute to
forming the characteristic subgraph patterns.

The lattice construction took 7 seconds, giving 359 nodes, using a 266MHz
Pentium II computer. The first rule set gave us 5 rules, which explained about half of
the total sum of squares in the problem.

3.2 Rule Interpretation Scheme

The strongest rule is the first rule of the first rule set and has the expression shown in
Figure 3. The main condition of this rule indicates the existence of AUX (auxiliary
verb) at the position [1-/-2-2], where hyphens are delimiters among edge indices
numbered from the right. Six RHS clauses are shown in decreasing order of BSS
values. The underlined row is included to show the information of the main condition
item. The last line shows that among 1,001 sentences, 117 satisfy the main condition,
and the sum of BSS values for all attributes is 640 along this link.

The position of AUX indicated by the main condition is illustrated as I in Figure 4,
where dashed lines denote the possibility of edges at the indicated locations. The first
line of the RHS part indicates the existence of the subgraph II. The percentage of
subgraph II increases from 11.7% to 100% along this rule link, and the associated
BSS value is 91.2. We can therefore say that the appearance of subgraph I is always
accompanied by that of II. As the frequencies of these two subgraphs are the same,

 rule can be

IF [1-/-2-2AUX: y] added on []
THEN [2./.1.1AUX: y]     11.7%->100.0%; BSS: 91.2
THEN [1-/-2-2AUX: y]     11.7%->100.0%; BSS: 91.2
THEN [1-/-2-1ADV: y]     11.6%-> 98.3%; BSS: 88.0

8.0
7.9
7.9
0.

odel.
they will always appear together, so the actual main condition of the
expressed by subgraph III in Figure 4.

THEN [2./.1.2ADV: y]     11.6%-> 98.3%; BSS: 8
THEN [1-2-1-/-2PRON: y]  14.3%-> 84.6%; BSS: 5
THEN [2.1.2./.1PRON: y]  14.3%-> 84.6%; BSS: 5
    Cases: 1001 -> 117              Sum_BSS:64

Fig. 3. A rule expression for the verb “think” by the cascade m
AUX                      think

              I

/-2-

/-2-2-

/

-1-/

AUX                      think

              II

/.1

/.1.1

/

2./

AUX                         think

              III

Fig. 4. Subtree expression of the main condition of a rule.
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The lines 3-4 and 5-6 indicate the high confidence for concurrent appearance of
subgraphs IV and V when the main condition is satisfied. In conclusion, the overall
rule interp n, depicted by the solid
lines, appe
by the bold
that appear

Another

TH

The item o
interpretati
other than 
itself in th
the locatio
subgraph V
useful info

3.3 Chara

The first 
characteris
in the prev
discrimina
Therefore,
of “think”.

The pa
descriptio
lines indi
significan

In fact,
understan
have to b
nouns an
pronouns
kinds of it

Fig. 5. Characteristic subgraph patterns found in a rule.

PRON     AUX        ADV         think                PUNC

                                    VI

 ADV         think

    IV

PRON                    think 

                  V
retation is shown by VI where the subgraph patter

ars very frequently when the auxiliary verb is located at the position shown
 lines. Also indicated in VI, by the dotted lines, is the punctuation symbol
s with the confidence of 61.5%.
 example of a RHS clause with a large BSS value is shown below,

EN [1.2./.1 PRON: n]  57.6% -> 100.0%; BSS:21.0

f this RHS clause indicates the nonexistence of the specified pattern. Two
ons are possible for this description. One suggests the existence of words
PRON at this location; the other leads to the nonexistence of the location
e tree, since either no words exist, but rather a subtree, or the existence of
n is incompatible with the main condition. We can see that the location and

I are contradictory in this rule, and therefore this clause does not add
rmation.

cteristic Patterns

rule set contained 5 characteristic rules, from which we constructed 3
tic patterns, VI – VIII , shown in Figure 6, following the procedure given
ious section. One rule has few supporting sentences and the other only

tes a group of sentences from those characterized by the three patterns.
 we can conclude that these are the major patterns associated with the usage
 These patterns are exclusive to each other, and cover 56% of all sentences.
tterns in Figure 6 are shown with an example sentence, the precondition
n, the number of cases, and a BSS value. The sub-pattern shown by bold
cates the main condition, while solid lines are concurrent ones. No
t changes in the VI/VT ratio were observed in these patterns.
 we can see these patterns frequently in various media. How are we to
d the absence of nouns at the locations of pronouns in these patterns? We

e careful in the interpretation of the patterns. Actually, we can expect proper
d noun phrases at the same locations, but proper nouns are less frequent than
 and the noun phrase is not recognized in the corpus. Incorporating these
ems should result in more impressive patterns.
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The results obtained here can be regarded as a type of statistic on syntactic pattern.
ad to new knowledge in the field

Fig. 6. Characteristic subgraph patterns for the verb “think”.

    PRON      AUX          ADV         think                PUNC
14%->85%  12%->98%  12%->98%                                         12%->62%

No precondition

Cases: 1001 ==> 117
   BSS = 640

 PRON    think                   PUNC
42%->91%                                   29%->100%

No precondition

Cases: 1001 ==> 288
   BSS = 532

PRON     think    PRON                  PUNC
22%->100%               13%->52%                        18%->57%

Precondition:
pattern VII not applicable

Cases: 710 ==> 159
   BSS = 360

 VI

 VII

VIII

For the purpose, I don’t think we can
avoid certain expenditures.

He thought it unlikely that the named 
chemicals were actually exported.

But I thought I would be able to
 beat him to it.
Extensive application of this method is expected to le
of linguistics.
4. Concluding Remarks

Combination of the relative indexing of graph vertices and the cascade model has led
to successful data mining in linguistics. A preliminary study on the mutagenicity of
chemical compounds also showed the usefulness of the current method [6]. The
ordered directed tree of sentence syntactic structure presents a clear contrast to the
unordered undirected graph of chemical structure formulae. Both applications
generate thousands of subgraph patterns as attributes, from which the efficient
pruning strategy of the cascade model is able to select less than one hundred attributes



Discovery of Characteristic Subgraph Patterns 557

to construct a lattice. The whole computation process is very efficient. Moreover, the
search is exhaustive, using the given pruning parameters with the mining process. All
of these points show the excellence of this mining method.

The basic strategy, the representation of a characteristic subgraph by the
superposition of linear subgraphs, seems to work well, at least in the two applications
examined. However, the rule interpretation process by individuals requires future
development. Specifically, the negation item can be interpreted in several ways, and
constant consultation with the database is required. Further work and research of this
mining process should yield positive results in various applications.
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