Skip to main content

Domain Analysis and Queries in Context

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1959))

  • 4466 Accesses

Abstract

We are formulating design guidelines for a knowledge system that is to provide answers to natural language queries in context. A query that starts out being very vague is to be sharpened with the assistance of the system. Also, the response to a query is more meaningful when presented in context. We recognize three types of context: essential, reference, and source. Essential context associates the response to a query with a time and place. Reference context provides reference values that help the user determine whether the response to a fuzzy query is true or false. Source context relates to the dependability of the response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cohen, P., Schrag, R., Jones, E., Pease, A., Lin, A., Starr, B., Gunning, D., and Burke, M., The DARPA High Performance Knowledge Bases project. AI Magazine 18:4 (Fall 1998), 25–49.

    Google Scholar 

  2. Wartik, S. and Prieto-Diaz, R., Criteria for comparing reuse-oriented domain analysis approaches. International Journal of Software Engineering and Knowledge Engineering 2 (1992), 403–431.

    Article  Google Scholar 

  3. Rolling, W.A., A preliminary annotated bibliography on domain engineering. ACM SIGSOFT Software Engineering Notes 19:3 (1994), 82–84.

    Article  Google Scholar 

  4. Glass, R.L. and Vessey, I., Contemporary application-domain taxonomies. IEEE Software 12:4 (1995), 63–76.

    Article  Google Scholar 

  5. Klir, G.J., Developments in uncertainty-based information. Advances in Computers 36 (1993), 255–332.

    Google Scholar 

  6. Parsons, S., Current approaches to handling imperfect information in data and knowledge bases. IEEE Transactions on Knowledge and Data Engineering 8 (1996), 353–372.

    Article  Google Scholar 

  7. Balzer, R., Tolerating inconsistency. In Proceedings of the 13th International Conference on Software Engineering, 158–165. IEEE CS Press, 1991.

    Google Scholar 

  8. Finkelstein, A.C.W., Gabbay, D., Hunter, A., Kramer, J. and Nuseibeh, B., Inconsistency handling in multiperspective requirements. IEEE Transactions on Software Engineering 20 (1994), 569–578.

    Article  Google Scholar 

  9. Liu, X.F. and Yen, J., An analytic framework for specifying and analyzing imprecise requirements. In Proceedings of the 18th International Conference on Software Engineering, 60–69. IEEE CS Press, 1996.

    Google Scholar 

  10. Burg, J.F.M. and van de Riet, R.P., Analyzing informal requirements specifications: a first step towards conceptual modeling. In Applications of Natural Language to Information Systems, 15–27. IOS Press, 1996.

    Google Scholar 

  11. Kao, M., Cercone, N., and Luk, W.-S., Providing quality responses with natural language interfaces: the null value problem. IEEE Transactions on Software Engineering 14 (1988), 959–984.

    Article  Google Scholar 

  12. Liu, K.-C. and Sunderraman, R., On representing indefinite and maybe information in relational databases. In Proceedings of the Fourth International Conference on Data Engineering. IEEE CS Press, 1988.

    Google Scholar 

  13. Liu, K.-C. and Sunderraman, R., Indefinite and maybe information in relational databases. ACM Transactions on Database Systems 15 (1990), 1–39.

    Article  MathSciNet  Google Scholar 

  14. Kong, Q. and Chen, G., On deductive databases with incomplete information. ACM Transactions on Information Systems 13 (1995), 354–369.

    Article  Google Scholar 

  15. Ichikawa, T. and Hirakawa, M., ARES: a relational database with the capability of performing flexible interpretation of queries. IEEE Transactions on Software Engineering SE-12 (1986), 624–634.

    Google Scholar 

  16. Motro, A., FLEX: a tolerant and cooperative user interface to databases. IEEE Transactions on Knowledge and Data Engineering 2 (1990), 231–246.

    Article  Google Scholar 

  17. Pirotte, A., Roelants, D., and Zimanyi, E., Controlled generation of intensional queries. IEEE Transactions on Knowledge and Data Engineering 3 (1991), 221–236.

    Article  Google Scholar 

  18. Motro, A., Intensional answers to database queries. IEEE Transactions on Knowledge and Data Engineering 6 (1994), 444–454.

    Article  Google Scholar 

  19. Yager, R.R., Using approximate reasoning to represent default knowledge. Artificial Intelligence 31 (1987), 99–112.

    Article  MATH  MathSciNet  Google Scholar 

  20. Kalagnanam, J., Simon, H.A., and Iwasaki, Y., The mathematical bases for qualitative reasoning. IEEE Expert 6:2 (1991), 11–19.

    Article  Google Scholar 

  21. Klir, G.J. and Yuan, B., Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, 1995.

    Google Scholar 

  22. Bosc, P. and Pivert, O., SQLf: a relational database language for fuzzy querying. IEEE Transactions on Fuzzy Systems 3 (1995), 1–17.

    Article  Google Scholar 

  23. Han, J., Huang, Y., Cercone, N., and Fu, Y., Intelligent query answering by knowledge discovery techniques. IEEE Transactions on Knowledge and Data Engineering 8 (1996), 373–390.

    Article  Google Scholar 

  24. Berztiss, A.T., Imprecise queries and the quality of conceptual models. In Information Modelling and Knowledge Bases V, 174–185. IOS Press, 1994.

    Google Scholar 

  25. Berztiss, A.T., The query language Vizla. IEEE Transactions on Knowledge and Data Engineering 5 (1993) 813–825.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berztiss, A.T. (2001). Domain Analysis and Queries in Context. In: Bouzeghoub, M., Kedad, Z., Métais, E. (eds) Natural Language Processing and Information Systems. NLDB 2000. Lecture Notes in Computer Science, vol 1959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45399-7_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-45399-7_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41943-3

  • Online ISBN: 978-3-540-45399-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics