Skip to main content

Multi-adjoint Logic Programming with Continous Semantics

  • Conference paper
  • First Online:
Logic Programming and Nonmotonic Reasoning (LPNMR 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2173))

Abstract

Considering different implication operators, such as Lukasiewicz, Gödel or product implication in the same logic program, naturally leads to the allowance of several adjoint pairs in the lattice of truthvalues. In this paper we apply this idea to introduce multi-adjoint logic programs as an extension of monotonic logic programs. The continuity of the immediate consequences operators is proved and the assumptions required to get continuity are further analysed.

Partially supported by Spanish DGI project BFM2000-1054-C02-02 and Junta de Andalucía project TIC-115.

Partially supported by Spanish DGI project BFM2000-1054-C02-02 and Junta de Andalucía project TIC-115.

Supported by Grant GAČR 201/00/1489

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. FRIL-Fuzzy and Evidential Reasoning in AI. Research Studies Press (John Wiley), 1995. 354

    Google Scholar 

  2. C. V. Damásio and L. Moniz Pereira. Hybrid probabilistic logic programs as residuated logic programs. In Logics in Artificial Intelligence, JELIA’00, pages 57–73. Lect. Notes in AI, 1919, Springer-Verlag, 2000. 351, 352, 353, 359

    Article  Google Scholar 

  3. C. V. Damásio and L. Moniz Pereira. Monotonic and residuated logic programs. In Sixth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU’01. Lect. Notes in Comp. Sci., Springer-Verlag, 2001. 351, 353, 358

    Google Scholar 

  4. M. van Emden and R. Kowalski. The semantics of predicate logic as a programming language. Journal of the ACM, 23(4):733–742, 1976. 357

    Article  MATH  Google Scholar 

  5. M. C. Fitting. Bilattices and the semantics of logic programming. Journal of Logic Programming, 11:91–116, 1991. 351

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Hásjek. Metamathematics of Fuzzy Logic. Trends in Logic. Studia Logica Library. Kluwer Academic Publishers, 1998. 353

    Google Scholar 

  7. E. Naito, J. Ozawa, I. Hayashi, and N. Wakami. A proposal of a fuzzy connective with learning function. In P. Bosc and J. Kaczprzyk, editors, Fuzziness Database Management Systems, pages 345–364. Physica Verlag, 1995. 353

    Google Scholar 

  8. J. Pavelka. On fuzzy logic I, II, III. Zeitschr. f. Math. Logik und Grundl. der Math., 25, 1979. 352

    Google Scholar 

  9. P. Vojtáš. Fuzzy logic programming. Fuzzy sets and systems, 2001. Accepted. 351, 353

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Medina, J., Ojeda-Aciego, M., Vojtaš, P. (2001). Multi-adjoint Logic Programming with Continous Semantics. In: Eiter, T., Faber, W., Truszczyński, M.l. (eds) Logic Programming and Nonmotonic Reasoning. LPNMR 2001. Lecture Notes in Computer Science(), vol 2173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45402-0_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-45402-0_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42593-9

  • Online ISBN: 978-3-540-45402-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics