Abstract
This paper describes a newalgorithm for illumination-invariant change detection that combines a simple multiplicative illumination model with decision theoretic approaches to change detection. The core of our algorithm is a new statistical test for linear dependence (colinearity) of vectors observed in noise. This criterion can be employed for a significance test, but a considerable improvement of reliability for real-world image sequences is achieved if it is integrated into a Bayesian framework that exploits spatio-temporal contiguity and prior knowledge about shape and size of typical change detection masks. In the latter approach, an MRF-based prior model for the sought change masks can be applied successfully. With this approach, spurious spot-like decision errors can be almost fully eliminated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. V. Oppenheim, R. W. Schafer, T. G. Stockham Jr: Nonlinear filtering of multiplied and convolved signals. Proc. IEEE 56(8):1264–1291, 1968.
Y. Z. Hsu, H.-H. Nagel, G. Rekers: New likelihood test methods for change detection in image sequences. Comp. Vis. Grap. Im. Proc 26:73–106, 1984.
K. Skifstad, R. Jain: Illumination independent change detection for real world image sequences. Computer Vision, Graphics, and Image Processing, 46, pp. 387–399, 1989.
T. Aach, A. Kaup, R. Mester:Astatistical framework for change detection in image sequences. 13ième Colloque GRETSI, pp. 1149–1152, Juan-Les-Pins, France, Sept. 1991.
T. Aach, A. Kaup, R. Mester: Statistical model-based change detection in moving video. Signal Processing 31(2), pp.165–180, 1993.
T. Aach, A. Kaup, R. Mester: Change detection in image sequences using Gibbs random fields. IEEE Internal. Works. Intell. Signal Processing Com. Sys., pp. 56–61, Sendai, Japan, Oct. 1993.
G. Tziritas, C. Labit: Motion Analysis for Image Sequence Coding. Elsevier, 1994.
T. Aach, A. Kaup: Bayesian algorithms for change detection in image sequences using Markov random fields. Signal Processing: Image Communication 7(2): pp. 147–160, 1995.
A. Mitiche, P. Bouthemy: Computation and analysis of image motion: A synopsis of current problems and methods. Inl. Jour. Comp. Vis. 19(1):29–55, 1996.
S.-Z. Liu, C.-W. Fu, S. Chang: Statistical change detection with moments under time-varying illumination. IEEE Trans. Image Processing 7(9), pp. 1258–1268, 1998.
ISO/IEC JTC 1/SC 29/WG 11 N2502, Final Draft International Standard, Annex F, Information Technology-Very-low bitrate audio-visual coding-Part 2: Visual, Atlantic City, 1998.
E. Durucan, T. Ebrahimi: Robust and illumination invariant change detection based on linear dependence for surveillance application. Proc. EUSIPCO 2000, pp. 1041–1044, Tampere, Finland, Sept. 3-8, 2000.
D. Toth, T. Aach, V. Metzler: Bayesian spatio-temporal motion detection under varying illumination European Signal Processing Conference (EUSIPCO), Tampere, Finland, 4.-8.9.2000 (M. Gabbouj, P. Kuosmanen, eds.), 2081–2084.
R. Mester, M. Mühlich: Improving Motion and Orientation Estimation Using an Equilibrated Total Least Squares Approach. IEEE Intern. Conf. Image Proc. 2001 (ICIP 2001), Thessaloniki, Greece, Oktober 2001.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mester, R., Aach, T., Dümbgen, L. (2001). Illumination-invariant Change Detection Using a Statistical Colinearity Criterion. In: Radig, B., Florczyk, S. (eds) Pattern Recognition. DAGM 2001. Lecture Notes in Computer Science, vol 2191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45404-7_23
Download citation
DOI: https://doi.org/10.1007/3-540-45404-7_23
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42596-0
Online ISBN: 978-3-540-45404-5
eBook Packages: Springer Book Archive