Abstract
We describe an Augmented Reality system using the corners of a color cube for camera calibration. In the augmented image the cube is replaced by a computer generated virtual object. The cube is localized in an image by the CSC color segmentation algorithm. The camera projection matrix is estimated with a linear method that is followed by a nonlinear refinement step. Because of possible missclassifications of the segmented color regions and the minimum number of point correspondences used for calibration, the estimated pose of the cube may be very erroneous for some frames; therefore we perform outlier detection and treatment for rendering the virtual object in an acceptable manner.
This work was partially funded by the German Science Foundation (DFG) under grant SFB 603/TP C2. Only the authors are responsible for the content.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
C.-S. Chen, C.-K. Yu, and Y.-P. Hung. New calibration-free approach for augmented reality based on parameterized cuboid structure. In ICCV 99 [7], pages 30–37.
J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ, 1983.
Oliver Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge, MA, 1993.
G. Hartmann. Recognition of hierarchically encoded images by technical and biological systems. Biological Cybernetics, 57:73–84, 1987.
J. Hornegger and C. Tomasi. Representation issues in the ML estimation of camera motion. In ICCV 99 [7], pages 640–647.
Proceedings of the 7th International Conference on ComputerVision (ICCV), Corfu, September 1999. IEEE Computer Society Press.
D. Koller, G. Klinker, E. Rose, D. Breen, R. Whitaker, and M. Tuceryan. Automated camera calibration and 3D egomotion estimation for augmented reality applications. In Computer Analysis of Images and Patterns (CAIP), pages 199–206, Kiel, September 1997. Springer.
J. D. Markel and A. H. Gray Jr. Linear Prediction of Speech, volume 12 of Communications and Cybernetics. Springer Verlag, Berlin, Heidelberg, NewYork, 1976.
Y. Ohta and H. Tamura, editors. Mixed Reality-Merging Real and Virtual Worlds. Springer-Verlag, Berlin, 1999.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, 2nd edition, 1992.
V. Rehrmann and L. Priese. Fast and robust segmentation of natural color scenes. In Proceedings of the 3 rd Asian Conference on Computer Vision, volume 1, pages 598–606, HongKong, January 1998.
J. Schmidt. Erarbeitung geeigneter Optimierungskriterien zur Berechnung von Kameraparametern und Szenengeometrie aus Bildfolgen. Diplomarbeit, Lehrstuhl für Mustererkennung, Universität Erlangen-Nürnberg, 2000.
J. Schmidt and H. Niemann. Using quaternions for parametrizing 3-D rotations in unconstrained nonlinear optimization. In T. Ertl, B. Girod, G. Greiner, H. Niemann, and H.-P. Seidel, editors, Vision, Modeling, and Visualization 2001, Stuttgart, Germany, November 2001. Submitted.
I. Scholz. Augmented Reality: A System for the Visualization of Virtual Objects Using a Head-mounted Display by Localization of a Real Object of Known Geometry and Color. Diplomarbeit, Lehrstuhl für Mustererkennung, Universität Erlangen-Nürnberg, 2000.
Y. Seo and K. Sang Hong. Calibration-free augmented reality in perspective. IEEE Transactions on Visualization and Computer Graphics, 6(4):346–359, 2000.
E. Trucco and A. Verri. Introductory Techniques for 3-D Computer Vision. Prentice Hall, NewYork, 1998.
R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation, Ra-3(3):323–344, August 1987.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schmidt, J., Scholz, I., Niemann, H. (2001). Placing Arbitrary Objects in a Real Scene Using a Color Cube for Pose Estimation. In: Radig, B., Florczyk, S. (eds) Pattern Recognition. DAGM 2001. Lecture Notes in Computer Science, vol 2191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45404-7_56
Download citation
DOI: https://doi.org/10.1007/3-540-45404-7_56
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42596-0
Online ISBN: 978-3-540-45404-5
eBook Packages: Springer Book Archive