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Abstract. The chief aim of this survey is to discuss exception handling models
which have been developed for concurrent object systems. In conducting this
discussion we rely on the following fundamental principles: exception handling
should be associated with structuring techniques; concurrent systems require
exception handling which is different from that used in sequential systems;
concurrent systems are best structured out of (nested) actions; atomicity of actions
is crucial for developing complex systems. In this survey we adhere to the well-
known classification of concurrent systems, developed in the 70s by C.A.R.
Hoare, J.J. Horning and B. Randell, into cooperative, competitive and disjoint
ones. Competitive systems are structured using atomic transactions. Atomic
actions are used for structuring cooperative systems. Complex systems in which
components can compete and cooperate are structured using Coordinated Atomic
actions. The focus of the survey is on outlining models and schemes which
combine these action-based structuring approaches with exception handling. In
conclusion we emphasise that exception handling models should be adequate to
the system development paradigm and structuring approaches used.

1 Introduction

System structuring is employed to successfully deal with the growing complexity of
modern computer systems. The need to cope with abnormal system behavior makes
system design more complicated and, as experience shows, more error-prone.
Exception handling was therefore introduced as a disciplined and structured way of
handling abnormal system events [7]. It is usually a very important part of any general
structuring technique used in system design as it adds new ways of concern separation
which are vital for dealing with abnormal situations: it allows us to separate normal
code from exception handlers during system design and structuring, introduces a
dynamic separation of the execution of normal code and handlers, and provides two
ways of returning the control flow after the execution of a system component. This
clearly shows that exception handling mechanisms should rely on the way the system
is structured and be an integral part of system design. Many researchers regard
exception handling as a means for achieving system fault tolerance [5, 18], and we
share this view. In this context exception raising follows error detection, exception
handling equals to error recovery and units of system structuring are units of exception



handling and of recovery. Exception handling is used for incorporating application-
specific fault tolerance.

Considerable effort has been devoted to developing exception handling models for
sequential object-oriented systems, so a common understanding exists on many topics
in the field. Many practical systems have been designed using these features. The
situation is different in concurrent object-oriented systems. Although several schemes
combining concurrency and exception handling have been proposed, research in this
area is still scattered and most concurrent systems use sequential exception handling. It
is our belief that this is not the way it should be as exception handling features should
correspond to the programming feature used in system design. The choice of a way to
introduce exception handling into such systems depends on the way concurrent
systems are to be developed and structured because exception handling is a system
design issue, and language features should assist in and impose proper design.
Exception handling is tightly coupled with program structure and therefore the way in
which the dynamic execution of concurrent systems is structured influences possible
ways of introducing exception handling into such systems.

Several schemes have been proposed for introducing different units of system
structuring into concurrent object-oriented systems, but only rarely do they incorporate
exception handling features. And even when they do, they neither provide a general
exception handling model nor fit in with the main principles of object-oriented
programming properly. Although this is an area of very active research, there are still
many unclear points and unsolved problems here. A general common understanding
does not seem to exist. The purpose of this survey is to outline the existing approaches
and to compare them, to discuss problems to which satisfactory solutions have yet to
be found and to show likely directions of future research.

2 Concurrency and System Structuring

Many researchers view all object-oriented systems as inherently concurrent but this is
justified only if object consistency is somehow guaranteed. In reality, concurrency
adds a new dimension to system structure and design. Concurrent systems are
extremely difficult to understand, design, analyse or modify. To do this successfully,
we need concurrency features which would relate to the specific characteristics of both
object-oriented systems and the applications to be designed.

2.1 Single Method Concurrency

Concurrency in object-oriented systems is usually provided at the level of separate
method calls and objects (e.g. in integrated languages [30], which unify processes and
objects by defining objects as active entities). This allows object consistency to be
guaranteed and concurrency aspects of object behaviour to be addressed (see Fig. 1). In
this case the units of system structure and behaviour are separate method calls and
objects.

2.2 Competitive and Cooperative Systems
Complex object-oriented systems often need sophisticated and elaborate concurrency

features which may go beyond the traditional concurrency control associated with
separate method calls. The existing single method approaches do not scale because we



deal with each single operation separately. There is a need for using units of system
structuring which encapsulate complex behaviour and embrace groups of objects and
of method calls. These units should represent dynamic system execution as opposed to
the static declaration of objects inside objects. For example, it clearly makes no sense
to declare all potential clients of a server in a bigger object. System understanding,
verification and modification is facilitated if system execution is recursively structured

of units encapsulating several method calls or/and objects.
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Fig. 1. Two threads T1 and T2 access objects O1 and O2 concurrently

Another concern which makes it necessary to extend the single-object view of
system structuring is provision of fault-tolerance: in many situations one cannot
guarantee that erroneous information is always contained inside an object. Without this
strong assumption, we have to deal with very complex error containment domains
consisting of several interconnected objects. For example, an error in a server can
affect several client objects, so it will not be sufficient to recover only one of them (a
client or the server). There are many applications which require such structuring units:
banking systems, CSCW systems, complex workflows, control of modern production
lines and cells, etc.

Various classifications of concurrent systems play an important role in identifying
general approaches/techniques as they make it possible to concentrate on
characteristics which are specific to different categories of systems and to develop
methodologies and supports which make it easier to develop systems of different
categories. To better understand additional considerations that we believe should be
taken into account in addressing issues of system structuring, let us consider the
classification of concurrent systems in [18] (which, in its turn, follows classifications
in [10, 11]). Three categories are outlined here; they are independent (disjoint),
competing and cooperating systems.

Competitive concurrenogxists when two or more active components are designed
sepaately, are not aware of each other, but use the same passive components.
Programmers (would like to) live in an artificial world in which they do not have to
care about other concurrent activities. They access objects as if they had them at their
disposal. This concurrency is used, for example, when clients access a server; some of
the mechanisms supporting it are the RPC and synchronisation constraints.

Cooperative concurrencgxists when several components cooperate, i.e. do some
job together and are aware of this. They can communicate by resource sharing or
explicitly, but the important thing is that they are designed together so that they can
cooperate to achieve their joint goal and use each other's help and results. Existing
systems sometimes provide support for single one-to-one communications, a direct
cooperation of equal partners: rendezvous, signals, message send/receive.

Many researchers rely on the conceptaddmicity in developing structuring
approaches to system design. Concurrent object-oriented systems (and systems in



general) are easier to understand and to analyse (see, for example [2, 17]) if their
execution is built out of atomic units encapsulating several objects and method calls,
provided no information crosses the borders of such units. The ability to nest such
units is vital for dealing with system complexity in a scalable way (we say that a unit is
nestedif it contains a subset of objects or/and method calls from the containing one).
Providing fault tolerance is essentially facilitated in systems whose execution is
structured out of suchtomic unitsas these units confine erroneous information (see
[28] for a detailed discussion).

2.3 Structuring Competitive Systems

Atomic transactions incorporating several object calls are the main approach to
structuring competitive systems (Fig. 2). Atomicity, consistency, isolation and
durability (ACID) are the fundamental properties of such units [8]. A transaction can
end either by committing all updates made on the objects or by aborting them. The
ACID transactions form the dynamic units of system execution and as such can be
nested in many models and implementations. These transactions are oriented mainly
towards tolerating hardware faults of different types: transient faults, node crashes, etc.
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Fig. 2. Transaction incorporating several calls of several objects (O1 and O2)

This approach works well for database, client-server or simple bank systems but
many applications nowadays require more sophisticated features. The original
transaction concept has been further developed; in particular, additional concurrency at
the caller side is often allowed.

The concept of anultithreaded transactiofMTT) has been used in different
transactional models for quite a long time. Very typical examples are the CORBA
transaction service [20] and Arjuna [21]. Several threads can perform operations on a
set of transactional objects within an MTT (Fig. 3). One of them starts a transaction,
then others learn its identity, using which they can access transactional objects within
the MTT. If a thread commits or aborts, the transaction does the same. This model is
quite general and flexible, it has been used in many industrial applications. However, it
leaves the burden of a highly labour-consuming and error-prone coordination of
threads inside an MTT to application programmers as it does not impose any discipline
on what these threads can do (guaranteeing the ACID properties of server objects is of
paramount concern here). For example, any thread can decide to leave the MTT
without knowing whether it is committed or aborted. In this model threads do not
actually join the transaction because the transaction support is not aware of the
concurrency, and transactional objects do not guarantee mutual exclusion for threads of
the same transaction. The thread exit from an MTT is not coordinated. Another
problem with the MTT model is that programmers have to start and commit/abort



transactions explicitly because transactional structure is separate from method/object
structure.

Generally speaking, a very similar transactional model is provided by Enterprise
JavaBeans architecture (EJB) [6]. EJB allows system developers to associate several
client threads with the same transactional context. Unfortunately, this architecture
supports only flat transactions (nesting is not allowed).
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Fig. 3. CORBA multithreaded transactions

Applications built using the object-based language Argus [19] are composed of
guardians, each of which provides an interface consisting of callable procedures called
handlers. Handlers can fork concurrent threads which are joined when a handler is
completed (see Fig. 4). Handler execution forms an atomic transaction; the execution
of nested handler calls are performed as nested transactions.

The Argus approach has been very influential: Vinari/ML [9] and Transactional
Drago [14] have similar computational models. Vinari/ML offers a transactional
extension of SML which allows creating transactional versions of high-order functions;
in this model new participants are explicitly forked by existing participants.
Transactional Drago is an extension of Ada (it requires a pre-compiler and a special
run-time support) which allows any program block to be declared and executed as an
ACID transaction. Tasks declared inside this block are executed together with the
block as additional transaction participants and they are to be completed before the
transaction can end.
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Fig. 4. Argus multithreaded transactions

A new model, called open multithreaded transactions (OMTT), has been recently
proposed to allow developing systems with a richer concurrency than that of Argus yet
keeping the transaction boundary on the caller (thread) side under control [15]. In the
OMTT model multiple threads, called joined participants, can join a transaction, and
any transaction participant can fork a thread which becomes a new transaction
participant called a spawned participant (Fig. 5). The restriction is that if a participant
has been created inside a transaction it has to be completed inside it. Note that such



participants take part in the execution of the final commit/abort protocol. The OMTT
can be nested: only participants of the containing transaction can join the nested one.
Transactional support effectively consists of two parts: one guarantees the ACID
properties of the objects called by transaction participants, the other coordinates
transaction participants (transaction entry, exit, nesting). Transaction participants can
see each other's updates of transactional objects but the entire transaction is isolated
from the rest of the system. In some ways this scheme allows patrticipants to (loosely)
cooperate but the idea is that they do not depend on each other and have their own
goals inside such a transaction.

T1

Fig. 5. Open multithreaded transactions

The concurrent object-oriented language Arche [13] allows dynamic grouping of
objects. A group of N caller objects can synchronously call methods with the same
names and signatures in a group of M server objects (e.g. objects of the same type); all
these methods formraultioperation Multioperation results are returned to all callers
(Fig. 6). Some servers can synchronously call another multioperation. Arche relies on a
competitive concurrency model (other multioperations compete for server objects)
with a simple concurrency control based on mutual exclusion. Cooperation of servers
executing a multioperation is not supported in the model, although a multioperation
can issue a call to another multioperation which can only be performed jointly by all
group components; this forms a basis for multioperation nesting. Arche does not use
the full-fledged model of atomic transactions: multioperations are atomic only if the
callees do not call external objects. This computation model has proved useful for
implementing object replication and for employing diversely designed objects.

_ s1 -
c1 "
s2 >—’
c2 c2
s3 >_»

Fig. 6. Multioperation in Arche: callers C1 and C2 call a group objects S1, S2, and S3
2.4 Structuring Cooperative Systems
Many object-oriented systems provide features only for performing single acts of one-

to-one cooperation. For a number of reasons, this is not sufficient when complex
cooperative applications, such as complex CSCW systems or workflows, are to be



developed. First of all, the approach should scale well to be useful for designing such
systems in which more than two objects have to cooperate to achieve joint goals.
Secondly, it should rely on structuring units which can be made atomic and nested (to
cope with system complexity). Another concern is providing fault tolerance: we need
such atomic units to keep under control erroneous information which can be smuggled
between several objects (e.g. several clients of the same server). If we do not structure
systems out of such units we encounter serious problems in defining the recovery
region. This complex multi-participant cooperation should be a system design concern
as we do not want to reason about it using single two-participant interactions (which
can be done but can dramatically increase the responsibility of programmers and as
such be error-prone).

The general concept atomic actionsproposed in [4], answers all these concerns.
Several participants (threads, processes, objects, etc.) enter an action and cooperate
inside it to achieve joint goals (Fig. 7). They are designed to cooperate inside the
action and are aware of this cooperation. These participants share work and explicitly
exchange information in order to complete the action successfully. Atomic actions
structure dynamic system behaviour. To guarantee action atomicity, no information is
allowed to cross the action border. Actions can be nested (a subset of the participants
of the containing action can join a nested action). Participants leave the action together
when all of them have completed their job. If an error is detected inside an action all
participants take part in a cooperative recovery. Atomic actions provide a sound
framework for developing schemes intended for tolerating faults of different types:
hardware faults, software design faults, transient faults, environmental faults, etc. The
conversationscheme [23] was the first atomic action scheme proposed: it uses
software diversity and participant rollback to tolerate design faults. A number of
atomic action schemes incorporating different fault tolerance techniques have been
developed since then for different languages: CSP, Concurrent Pascal, Ada, OCCAM,
Java (with and without extensions); for distributed, multiprocessor and single computer
settings; for different application requirements [24].
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Fig. 7. Atomic actions: participants P1-P4 take part in the containing action, participants P3 and
P4 in the nested action

There could be several structuring ways of incorporating atomic actions into
object-oriented and object-based systems. The first approach is to introduce actions as
classes or objects with methods representing participants, one each (as, for example, in
the schemes [16, 32]). The computation model allows all participants to be active at the
same time. The downside is that in this case we are losing the ability to treat



participants as classes. Another approach is to view actions as sets of participant
objects. For example, in scheme [26] a set of objects takes part in an atomic action by
executing one method each; the action here is formed as a set of separate methods.
Interfaces of participant objects have to be extended to allow their synchronisation on
the action entry, exit and nesting. In both scenarios we need a special support to coor-
dinate participant execution. These ideas allow us to make use of the many advantages
of object-oriented programming while designing new object-oriented atomic action
schemes (including their supports) and applying them.

25 Structuring Systems with Cooperative and Competitive Concurrency

Developers of the Coordinated Atomic action (CA action) concept [25, 33] realised
that many realistic systems to be modelled/controlled by software have elements of
both cooperation and competition and that it is important to allow them to be combined
within one system. CA actions provide a framework for dealing with different kinds of
concurrency and achieving fault tolerance by integrating and extending two
complementary concepts - atomic actions [4] and atomic transactions [8]. Atomic
actions are used to control cooperative concurrency and to implement coordinated
error recovery whilst transactions are used to maintain the consistency of shared
resources in the presence of failures and competitive concurrency (Fig. 8).
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Fig. 8. CA atomic actions: action participants access transactional objects

Each CA action is designed as a stylised multi-entry procedure with roles which are
activated by action participants cooperating within the CA action. Logically, the action
starts when all roles have been activated and finishes when all of them reach the action
end. CA actions can be nested. The state of the CA action is represented by a set of
local and transactional objects. Transactional objects can be used concurrently by
several CA actions in such a way that information cannot be smuggled among them
and that any sequence of operations on these objects bracketed by the start and
completion of the CA action has the ACID properties with respect to other sequences.
The execution of a CA action looks like an atomic transaction for the outside world.
Action participants explicitly cooperate (interact and coordinate their executions)
through local objects (for example, those of message, mailbox or buffer classes). All
participants are involved in recovery if an error is detected inside an action since
conceptually it makes no difference which of them detects an error and the whole
action represents the recovery region. Object-orientation plays an important role in the



CA action concept and in developing different Java and Ada implementation schemes:
concrete actions, action roles, local object and transactional objects are viewed as
instances of classes.

3 Exception Handling

Exceptions are abnormal events which can happen during program execution. Many
languages and systems provide special features for handling them in a disciplined way.
These features allow programmersdiclareexceptions and enable programmers to
treat a program unit as tlexception contexdnd to associate exceptions axdeption
handlerswith such context, so that when an exception is raised in this context,
execution stops and a corresponding handler is searched for among the handlers (there
are some models in which one can propagate an exception straight outside the context).
In our opinion, the vital feature of any exception handling mechanism is its ability to
differentiate betweeinternal exceptiongo be handled inside the context and the
external exceptionshich are propagated outside the context: these exceptions are not
clearly separated in many languages although it is obvious that they are intended for
different purposes.

This separation can be done provided the following conditions are met: contexts are
associated with program units which have interfaces and the conagpttext nesting
is defined. Most existing exception handling mechanisms use dynamic exception
context nesting in which case the execution of the context can be completed either
successfully or by interface exception propagation - this exception is treated as an
internal exception raised in theontaining contextThe simplest example of the
dynamic nested context is nested procedure calls. Actually this is the dominating
approach which suits the client/server or remote procedure call paradigms well and
which is used in most systems and languages (e.g. in C++, Ada, Java, CLU).

External exceptions allow programmers to pass (in a disciplined, unified and
structured fashion) different outcomes to the containing context. This can be used to
inform it of the reasons for abnormal behaviour and of the state in which the context
has been left, to pass partial results, etc. Another important issue which exception
handling models have to address is defining the state in which the context is left when
an external exception is propagated. Some systems provide an automatic support which
guarantees the "all-or-nothing" semantics: if an exception is propagated outside, all
modifications made inside the context are cancelled. Another possibility (which
originates in thelnscapesoftware development environment [22]) is to allow the
context to be left in several states: an initial state (an abort exception is propagated);
successfully committed state (if no exception is propagated outside); and several
"partial" committed states, when the requested result cannot be achieved but partial (or
degraded, alternative) results are still acceptable (external exceptions are propagated).
It is clear that developing supports to provide such functionalities is a difficult task,
this is why in many systems all responsibility of leaving the context in a known and
consistent state rests entirely with application programmers.

The model of exception handing in object-oriented programming follows all
fundamental principles of building such mechanisms. Exception handling is usually
associated with either dynamic (method calls) or static (object/class declaration)
system structuring: exception contexts are methods or classes, interface exceptions are
declared in the type (often in method signatures). Unfortunately, in many concurrent



object-oriented systems exception handling is, in essence, sequential as it is related to
single classes or separate methods.

4 Single Method Exception Handling in Concurrent Systems

In many concurrent object-oriented systems (e.g., Java, Guide, Arche and Ada)
exceptions are propagated through nested (and, sometimes, remote) method calls and
exception contexts are either separate methods or objects. These systems provide
features for guaranteeing object consistency when several clients issue concurrent
calls. This is a very important issue but in our opinion this type of exception handling

is not sufficient for many reasons. If only mechanisms of this type are employed
exception handling is effectively separated from concurrent programming. Moreover,
such mechanisms rely on a very simplistic view of concurrent system structuring and
of handling abnormal events in such systems. Some researchers (e.g. [3]) argue that
special features for involving several concurrent objects in exception handling are so
difficult to develop and use that object-oriented system developers should use only
sequential exception handling. Thus, an essential but a most difficult feature to provide
is random interruption of a thread when an exception is raised in another thread. We
believe that this misunderstanding is due to the fact that exception handling issues are
being considered separately from those of system structuring, which is clearly wrong
for many reasons: first, exception contexts are (should be viewed as) units of system
structuring; secondly, dynamic system structure is defined by exception context
nesting and, thirdly, interface exceptions have to be part of structuring units.

In our opinion, there are no reasons why exception handling should have to be
sequential in concurrent systems. Concurrency clearly adds a new dimension to system
design and execution. And exception handling should keep up with this new feature.
Moreover, concurrent exception handling should be associated with the way a
concurrent system is structured in the same manner in which this works for sequential
systems. We consider such support for exception handling in concurrent programming
vital for dealing with the complexity of concurrent systems. Ideally, exception contexts
(i.e. structuring units) should encapsulate complex behaviour consisting of several
operations on several objects.

There have been some attempts to address this problem. For example, the Oz
language [31] allows associating a handler with a thread. This handler is initiated
before the thread is terminated, which can be used for handling any exceptions raised
in any threads as well as for those propagated out of the outmost context in the thread.
Language Facile (an extension of SML) [29] allows us to declare the same exception in
several processes; when this exception is raised in any of them, the execution of all
processes which declared this exception is interrupted and handlers are called (the
process terminates if it has not a handler for this exception). Another example is Ada,
in which an exception propagated out of the accept body during rendezvous is
signalled in the context of the caller and of the callee containing the accept body.

A more sophisticated example is an extension of the concurrent object-oriented
language ABCL/1 by a concurrent exception handling mechanism [12]. This extension
relies on the ABCL/1 computational model, within which method calls are viewed as
message transmissions between concurrent objects, and methods as operations
initialised by accepting the corresponding messages. Exceptions are treated here as
signals that can be transmitted between objects. Any method call can be accompanied
by a special tag indicating the reply destination: the tag is the name of the object which



will receive the method results (the reply). The exception context is a block of
statements or a method body. In the extended ABCL/1 a new noticongilaintis
introduced. It is similar to the notion of reply but intended for informing another object
(complaint destination) of any unexpected things occurring during object (method)
execution. Complaints (a type of failure exceptions) can be of four kinds: unaccepted
messages, time-outs, system-defined (predefined) and user-defined complaints.
Complaint destination can be declared in each object, which changes the direction of
exception propagation from methods (objects).

Languagef g is another interesting attempt to introduce exception handling into

concurrent systems [1]. In this language, if a process cannot continue its normal
execution because of an exception, it signals a global exception so that any process
which will be communicating with this process in the course of its normal execution
will get an exception raised in its context.

Unfortunately, the schemes above neither relate exception handling to structuring
concurrent systems, nor scale well. They do not provide any support for leaving the
exception context in a known consistent state. Usually all responsibility for transferring
information about exceptions among several processes and their coordinated handling
is left with programmers.

5 Action-Oriented Exception Handling

Structuring complex concurrent systems using atomic actions offers us a
straightforward choice of exception contexts. (By atomic actions we mean all types of
atomic units of structuring system behaviours discussed above in Section 2: atomic
transactions, atomic actions, CA actions.) Treating such units as contexts seems the
most beneficial way because these atomic units have clearly defined borders, can be
nested and no information can cross the unit border. It is important that this approach is
compatible with the way we structure sequential systems for exception handling, which
is based on nested method calls. The general exception handling model can easily be
applied here to allow internal exceptions and corresponding handlers to be associated
with such structuring unit. Actions can have interfaces enriched by external exceptions
which the unit can propagate into the containing exception context (i.e. into the
containing structuring unit). Atomicity of actions (i.e. of exception contexts) is vital for
dealing with abnormal events (i.e. exceptions) as it guarantees the containment of all
(potentially erroneous) information which should be involved in exception handling
and recovery. Clearly, the atomicity of action execution has a general importance for
all phases of system development: it facilitates reasoning about the system, system
understanding, verification and development, tolerating faults of different types, etc. In
addition, it guarantees the most beneficial way of information and behaviour
encapsulation, when no intermediate results can be seen from the outside and the
execution of units is indivisible. This is why we believe that exception handling in
concurrent systems should be action-oriented.

There is an important question which should be addressed while developing
support for such atomic units. There is a lot of evidence indicating that it is very likely
that multiple exceptions are raised at the same time in a concurrent (and, in particular,
distributed) system [27, 35]. These complex situations have to be correctly resolved,
and atomic actions give a simple and well-structured way of dealing with them. First of
all, concurrent exceptions raised in concurrent (sibling) actions are handled separately.
To deal with exceptions raised inside an atomic action, paper [4] proposes the concept



of exception treavhich includes all exceptions associated with this action and imposes
a partial order on them in such a way that a higher exception in the tree has a handler
which is capable of handling any lower-level exception or any combination of them.
The idea is to handle thesolvedexception which corresponds to the tree node that is
higher than nodes of all concurrent exceptions raised in the action. Recently this
approach has been further developed to allow action exceptions to be ordered by a
resolution graph and to provide an improved decentralised resolution algorithm [35].

Generally speaking, atomicity of actions means that the intermediate results of
action execution are not seen from the outside; we will adhere to this understanding in
the following discussion of different action schemes. Some of these schemes allow
partial (but consistent) action results to be achieved and the system to be moved in a
new consistent state when an exception is propagated outside this action; others
subscribe to the idea that if any exception is signalled outside an action, the "nothing"
semantics should be provided.

5.1 Exception Handling in Competitive Systems

The designers of transactional systems often do not incorporate exception handling but
use return error codes instead. There are many problems with this approach. Firstly, the
use of return codes has always been described as a canonical example of bad practice
caused by the absence of the exception handling mechanism [7]. Secondly, even if the
core language has exception handling, it is completely separated from transactions and,
as a result, application exception handling (including the exception context, exception
propagation, etc.) is separated from the transactional structure. The CORBA
transaction service [20] (Fig. 3) is a typical example of this: it offers a very
sophisticated MTT model but programmers can use only sequential exceptions (e.g.
those of C++ or Java): any exception raised in an MTT transaction can cross its border
unnoticed, each MTT participant deals with its exceptions separately, the MTT
transaction is not the exception context, one cannot define or handle exceptions at the
transaction level. Actually, the transaction border is not clearly defined in this model as
participant threads are not coordinated in any way.

It is symptomatic that the designers of EJB [6] have made a serious efforts to
combine exception handling with transactions. This model allows us to develop a
system in which any exception signalled by a transactional object can affect the
execution of the whole transaction. For example, one can mark the transaction for
abort, re-raise the same or another exception, try to recover the situation and continue
the transaction, abort the transaction and re-raise the same exception, etc. However, it
is clear that MTTs are not full-fledged exception contexts because multiple participants
are not coordinated (e.g. they are not informed when the transaction is aborted) and
because such transactions cannot be nested.

The most general approach to incorporating exception handling into competitive
systems is to allow each transaction to have internal exceptions with handlers inside
and external exceptions described in the transaction interface. Generally speaking,
interface exceptions are to be propagated to the containing transaction. It is important
to be able to associate some external exceptions with the abort outcome; when other
exceptions are signalled, the state of all objects involved should be known and
committed. The problem here is to introduce transactional exception handling into the
object-oriented context and to avoid having different exception mechanisms for



sequential and concurrent programming (i.e. for individual threads and for
transactions) within the same system.

Argus [19] (Fig. 4) provides a very powerful extension of sequential object-
oriented exception handling. Methods (called handlers in this model) are atomic
transactions which have external exceptions declared in their interfaces. Threads can
be forked inside, allowing very rich computations to be performed concurrently.
Unlike the CORBA MTT, all Argus threads have to be synchronised and joined when
the transaction commits or aborts. An interface exception is propagated to a single-
threaded caller when any thread inside the transaction signals it. Any thread may
decide to signal an exception with or without transaction abort, which makes it
possible to commit partial results and to associate different results with different
exceptional outcomes. Internal thread exceptions have to be dealt with separately by
individual threads as the system does not provide any coordination for dealing with
such exceptions (which suits the competitive nature of this model well). Argus offers a
special construct for handling interface exceptions rather than making it possible for
the containing transaction to deal with them explicitly at its level.

The exception handling model of Vinari/ML [9] is in many ways similar to that of
Argus but it does not differentiate between external and internal exceptions: it is not
possible to declare external exceptions in transactional functions; a transaction is
always aborted if any exception is propagated outside the transactional function; if
there is no local thread-level handler for an exception, it gets propagated outside the
transaction.

Transactional Drago [14], unlike Argus and Vinari/ML, resolves concurrent
exceptions raised by several participating threads before signalling a resolved
exception outside the transaction. In this model, external exceptions cannot be declared
in the transaction interface, and any exception which is not handled by a thread locally
aborts the transaction and gets propagated outside it.

The OMTT model clearly separates internal and external exceptions. Each
participant has to have handlers for all of its local exceptions. If it cannot handle it, it
has to explicitly signal an external exception which always causes the transaction
abort. External exceptions propagated by a joined participant are raised in the
containing context of the caller thread. There is a predefined exception
Abort_Transaction which can be signalled by spawned participants if they decide to
abort the transaction. This exception is propagated to the callers of all joined
participants if they do not signal their external exceptions concurrently.

In Arche (Fig. 6) each multifunction member represents an isolated exception
context and as such can signal an external exception. When all members have
completed their execution, a resolution function is applied, and the resolved exception
is propagated to all caller contexts (unless an appropriate action is taken by
programmers). This approach can clearly leave member objects in inconsistent states.

5.2 Exception Handling in Cooperative Systems

Exception handling in cooperative systems can be quite naturally incorporated into the
atomic action framework [4, 35]. A set of internal and external exceptions is associated
here with each action, and these exceptions are clearly separated. The model is
recursive, and all external exceptions of an action are viewed as internal ones of the
containing action (Fig. 7). Each object participating in the action has a set of handlers
for all internal exceptions. In this approach, action participants cooperate not only



when they execute program functions (i.e. during normal activity) but also when they
handle abnormal events. This is mainly due to the fact that when an atomic action is
executed, an error can spread to all participants, and the system can be returned into a
consistent state only if all participants are involved in handling. This is why, when an
exception is raised in any participant, appropriate handlers are initiated in all of them.
An action can be completed either by signalling an interface exception into the context
of the containing action or normally (without internal exceptions being raised or after a
successful cooperative handling of such exceptions). Concurrent internal exceptions
are resolved using a resolution graph, so that handlers for the resolved exception are
called in all participants (see Fig. 9).

Even though several object-oriented schemes incorporating this kind of exception
handling have already been proposed (several of them will be mentioned in Section 5.3
as this research has been mainly conducted in the context of developing the CA action
concept), there are still some theoretical and practical problems to be addressed. It is
not clear, for example, how to make an ordinary object also capable of performing,
when required, the functions of an action participant: the computational models and
object interfaces are very different for these two entities. There are still unclear points
as to how properly combine sequential exception handling and atomic action exception
handling in order to allow compatibility. The problems of inheriting and refining
action and role classes or types have not yet been addressed (let alone the refinement
of action exceptions, exception handlers, etc.).
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Fig. 9. Exception handling in cooperative systems: internal exception e2 is in the nested action
(in participant P3); after an attempt to handle it cooperatively (by P3 and P4) interface exception
e3 is propagated to the containing context. Another exception, el, is raised concurrently in this
context, and these two exceptions have to be resolved before cooperative handling starts at the
level of this action

5.3  Exception Handling in Systems with Cooperative and Competitive
Concurrency

Conceptually, exception handling in CA actions [25] (Fig. 8) is very similar to that in
atomic actions [4]: all action participants are involved in cooperative handling of any
internal exception, internal exceptions raised concurrently are resolved, external
exceptions are explicitly propagated by action participants, etc. (Fig. 9). The main
extension is an explicit dealing with local and transactional objects [35].

The CA action interface can contain one or more abort exceptions, a predefined
failure exception and a number of exceptions corresponding to partial (committed and
consistent) results which the action can provide. In the latter case it uses external



exceptions to inform the containing action of the fact that it has not been able to
produce a complete required result and, indirectly, of the state in which objects have
been left and of the partial results produced. When an abort interface exception is
signalled, the CA action is aborted: all local objects are destroyed (although, to
improve performance, they can be simply re-initialised if software diversity or retry are
used for recovery) and all modifications of transactional objects are cancelled. A
failure interface exception is signalled by the support when some serious problems are
encountered; for example, the support cannot abort or commit the states of
transactional objects. When an interface exception corresponding to a partial result is
signalled outside an action, the state of all transactional objects is committed before
raising this exception in the containing context. In all these cases signalling an
interface exception means that the responsibility for dealing with such abnormal event
is passed to a higher level in the system structure. The identity of the exception (with,
possibly, some output parameters) and the associated post-conditions provide this level
with all information it might need about the reasons for the exception and the current
system state.

There has been considerable experimental research on developing object-oriented
CA action schemes in Java and Ada and on applying CA actions to developing realistic
case studies: a series of Production Cell case studies, including a fault tolerant one [34]
and a real time one; a distributed internet Gamma computation; an auction system and
a subsystem of a railway control system which deals with train control and
coordination in the vicinity of a station. This research has produced first ever field
results on applying exception resolution: elaborate resolution graphs have been built
for a system controlling a complex industrial application with high reliability and
safety requirements [34].

6 Conclusions

The purpose of this survey is to analyse the exception handling models used in
concurrent (mainly object-oriented) languages and systems. Development of exception
handling features is tremendously complicated by the fact that exception handling is a
crosscutting issue which affects all other techniques and mechanisms used in system
development as any of them can encounter abnormalities of different types and has to
deal with them properly. Poorly developed models can undermine the basic purpose of
exception handling, which is concerned with dealing with abnormalities in a
disciplined and uniform way throughout the whole system (design and execution). In
this survey we wanted to demonstrate the main trends in developing exception
handling models for complex concurrent systems and to compare the existing models
using some fundamental ideas we believe in as the criteria:

. exception handling should reflect the way systems and their execution are
structured

. exception handling is the most general mechanism for achieving system fault
tolerance

. concurrent systems should be structured in a way which is different from that
of structuring sequential systems

. (nested) actions containing the execution of several objects should serve as
(nested) exception contexts

. atomicity of structuring unit execution is crucial for both fighting system

complexity and providing system fault tolerance



In conclusion, we would like to emphasise that advanced exception handling
models to be employed in concurrent object-oriented systems should relate to

. the development paradigm adhered to (e.g. object-orientation)

. the main implementation features (e.g. information and behaviour
encapsulation, typing, inheritance, concurrency, distribution)

. the type of concurrency (competitive, cooperative, disjoint)

. the system development (design) techniques used

. the way systems are structured (objects, classes, actions, modules)

. the application-specific characteristics of the system to be designed
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