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Abstract. Proof by refutation of a geometry theorem that is not uni-
versally true produces a Grobner basis whose elements, called side poly-
nomzials, may be used to give inequations that can be added to the hy-
potheses to give a valid theorem. We show that (in a certain sense) all
possible subsidiary conditions are implied by those obtained from the
basis; that what we call the kind of truth of the theorem may be derived
from the basis; and that the side polynomials may be classified in a useful
way. We analyse the relationship between side polynomials and kinds of
truth, and we give a unified algorithmic treatment of side polynomials,
with examples generated by an implementation.

1 Algebraic Preliminaries

Throughout, let n be a positive integer and L a fixed field containing the field
Q of rational numbers. Let Q[X,,] be the ring of polynomials with n-variable set
X, = {1, 2o, ..., &} over Q.

Let FF C Q[X,] and f € Q[X,]. We call (F, f) a possible theorem. (F)x,
denotes the ideal generated by F' in Q[X,]. For ¢ € L™ we denote by f(a) the
result of substituting a for their corresponding variables in f and evaluating.

For F' C Q[X,], let

Cx,(F)={f€Q[X,]]| foralla € L™ h(a) = 0 for all h € F implies f(a) = 0},

an ideal of Q[X,,] as is easily checked. If the choice of polynomial ring is clear
we often write just C'(F). If L is algebraically closed then by Hilbert’s Nullstel-
lensatz, Cx, (F) = {f € Q[X,] | f* € (F)x,}, the radical ideal generated by F
in Q[X,].

Dually, for F C Q[X,], let

Vx,(F)={alaeL" f(a) =0 for all f € F},

the variety associated with F C Q[X,]. Again, we often write just V(F) if the
context is clear, and if ' = {f}, a singleton set, we shall often write Vx_(f) (or



just V(f)) rather than Vx_ ({f}). Varieties are closed under arbitrary intersec-
tions and finite unions.

There is a familiar dual isomorphism between the lattices of varieties of the
form Vx, (G) and ideals of the form Cx, (G), G C Q[X,]. Because the lattice
of varieties is distributive and satisfies the descending chain condition, every
variety V' has a unique decomposition

V=ViuUuWu---uy,

into distinct irreducible components (varieties which cannot themselves be ex-
pressed non-trivially as unions of two or more smaller varieties).

2 The Kind of Truth of a Possible Theorem

In geometrical theorem proving, the higher level statement of a valid geometry
theorem naturally translates into an equational implication involving polyno-
mials, with geometrical predicates such as “points A, B and C' are collinear”
becoming polynomial equations via coordinatisation. Further, one can require
that certain variables be treated as independent, in the sense that no algebraic
relations are assumed to hold amongst them. Chou has argued in [2] that the
specification of the independent variables in a geometry theorem is an integral
part of the algebraic formulation: such variables are chosen according to a no-
tional “construction” that takes place when the geometry theorem hypotheses
are read in order. It is this approach we adopt.

Formally, suppose the variables in U’ C X, are specified as being independent;
view Q[U] as a subring of Q[X,]. We say that a variety V is U-generic (or
simply generic if the choice of U is clear) if no polynomial in Q[U] is zero on
all of V. If L is algebraically closed, then Vx _(F) is U-generic if and only if
(F)x, NQ[U] = {0}; this is called U-independence in [5]. Let Gx, (F') denote the
union of all U-generic irreducible components of Vx_ (F).

We can now define the four basic kinds of truth of a possible theorem: for
FU{f} CQ[X,], we say the possible theorem (F, f) is

1. universally true if f is zero on all of Vx, (F), that is, f(a) = 0 for all a €
Vx, (F);

2. generically true if f is zero on Gx, (F);

3. generically conditionally true if there exists an irreducible component of
Gx, (F) on which f is zero but f is not zero on all of Gx_ (F);

4. generically false there is no irreducible component of Gx, (F) on which f is
zero.

We are further able to separate the final category into two subcategories. A
generically false possible theorem is:

— degenerately true if there is no irreducible component of Gx, (F') on which f
is zero, yet there is at least one irreducible component of Vx_ (F) on which
f 1s zero;



— rarely true if there is no irreducible component of Vx, (F) on which f is zero.

We call these kinds of truth 1 to 4 respectively, with kind 4 split into 4(a)
and 4(b) as above. Note that a possible theorem is of at least one of these five
types, and exactly one of types 2 to 4 (b). We shall show how to determine the
kind of truth of a possible theorem using Grobner bases for the case where L is
algebraically closed.

Generic truth reflects the idea that the conclusion holding on the generic
irreducible components of the hypotheses 1s what 1s “really intended” by the
author of a theorem. Generically conditional truth occurs when there is some
ambiguity in the hypotheses of the theorem and the conclusion will not hold
on all generic irreducible components; this is in practice a rare situation but
can occur as illustrated in [2] and elsewhere. Generic falsity occurs when the
conclusion is valid on no generic irreducible components. In contrast to rare
truth, degenerate truth is at least a form of conditional truth, and the fact that
it can be algorithmically distinguished from rare truth has led us to define it
separately.

Most of these kinds of truth have in essence been considered elsewhere along
with algorithmic ways of determining the kind of truth of a possible theorem (see
[2], [1] and more recently [7] and [6] for instance). However, so far as we know,
no unified algorithmic treatment of the kind presented here, applying to all the
kinds of truth discussed here and providing a complete set of side polynomials
for each, has appeared previously.

3 Side Polynomials and Kinds of Truth

For the remainder of the article, F' and f will be an arbitrary subset and an
element of Q[X,] respectively.

In Kapur [4], a method described as refutational theorem proving was con-
sidered for proving geometry theorems translated into polynomial equations in
this way. Kapur’s approach was based on the idea of considering the conjunc-
tion of the hypotheses of the theorem with the negation of the conclusion (in a
certain sense), forming a Grobner basis and determining if it was {1}; if so, then
the theorem was validated and if not the polynomials in the basis could be used
to give side conditions in the form of inequations which could be added to the
hypotheses in order to give a valid theorem.

Such side conditions prove necessary because most standard Euclidean ge-
ometry “theorems”, as normally stated, are not universally true, owing to the
absence from the hypotheses of certain additional non-degeneracy conditions
that may be represented algebraically as inequations. These may correspond to
hypotheses of the form “points A, B and C are not collinear”, and so forth. Of-
ten, such extra hypotheses are not easy to guess, as is discussed at length in
[2], although synthetic proofs of geometry theorems make at least tacit use of
them. Note that any finite number of inequations may be expressed as a single
inequation.



We show that all possible side conditions (in a certain natural sense) are
implied by those obtained from the Grobner basis used in Kapur’s method, and
that the kind of truth of the theorem may be derived from this basis; moreover,
the side polynomials may be classified in a useful way.

Formally, we say that ¢ € Q[X,] is a side polynomial for (F, f) if f(a) =0
for all a € V(F) for which g(a) # 0. Let the set of all side polynomials for (F, f)
be denoted side(F, f).

Theorem 1 For the possible theorem (F, f), C(side(F, f)) = side(F, f).

Proof. Now of course side(F, f) C C(side(F, f)). Suppose h € C(side(F, f))
and that h(a) # 0 for some a € V(F). Then because h € C(side(F, f)), by
definition there exists g € side(F, f) such that g(a) # 0, so f(a) = 0. Hence
h € side(F, f) by definition, and so C(side(F, f)) C side(F, f). Hence the two

sets are equal. a

There are various kinds of side polynomial, corresponding to the various kinds
of truth as we shall show. Thus a side polynomial g for (F, f) is

1. generic if g € Q[U];
2. generically resolving if ¢ € Q[U] and (F, g) is not generically true;
3. degenerate if ¢ ¢ QU] and ) is generically true;

(F,
4. extraneous if g € Q[U] and (F, g) is universally true.

)
)

bl

Theorem 2 The possible theorem (F, f) is

1. universally true if and only if every polynomial is a side polynomial;

2. generically true if and only if there exists a generic side polynomaal;

3. generically conditionally true if and only if there exist no generic side poly-
nomials, but there does exist a generically resolving side polynomial;

4. degenerately true if and only if there exist no generic or generically resolving
side polynomaials, but there does exist a degenerate side polynomaial;

4. rarely true if and only if all side polynomials are extraneous.

Proof. The first part is immediate. The second is proved in [2].

Now suppose (F, f) has no generic or generically resolving side polynomials.
If g € side(F, f) then (F,g) is generically true, so if h(a) = 0 for all h € F and
g(a) # 0then a € G(F). Suppose h is a non-degenerate side polynomial for (7, f);
hence fh is zero on V(F), so certainly fh is zero on V(G), so V(G) C V(fh) =
V(£)UV(h). Hence V(G) = [V(G)NV(F)JUV(G)NV(R)]. But h is non-degenerate,
so h is not zero on all of V(G), so V(G) € V(h), so V(G)NV(h) C V(G), and so
V(G) NV(f) is a finite non-empty union of irreducible components of V(G): let
V(G’) be one of these irreducible components. Then V(') is a generic irreducible
component of V(F) also, and because V(G') C V(G) N V(f) C V(f), it follows
that f is zero on V(G'). Hence (F, f) is neither degenerately true nor rarely true.

Conversely, suppose (F, f) is neither degenerately true nor rarely true. Now
V(F) # 0, so C(F) # Q[X,]. Suppose f is zero on the generic irreducible
component V(F') of V(F); then V(F') C V(f). If V(F) has only one irreducible



component (namely itself), then V(F) = V(F”) and then f is zero on V(F) and
so any polynomial h & C'(F) is a non-degenerate side polynomial for (F, f); these
exist because C'(F) # Q[X,]. On the other hand, if V(F) has more than one
irreducible component, let V(H) be the union of the irreducible components of
V(F) other than V(F'). Let h € C(H)\C(F’); such a non-zero h exists since
V(F') € V(H), so C(H) is not a subset of C(F’), and C(H) is non-empty.
Further, if F'(a) = 0 yet h(a) # 0 then a € V(I)\V(H) C V(F') C V(). So
h € side(F, f). But h & C(F') and V(F’) C V(G), so h ¢ C(G), so h is a non-
degenerate side polynomial for (F, f). Thus every side polynomial for (F, f) is
degenerate if and only if (F, f) is degenerately true or rarely true.

Let U’ = . Then all irreducible components of V(F) are U’-generic, (F, g) is
U'-generically true if and only if (F, g) is universally true, and a side polynomial
is U'-degenerate if and only if it is extraneous. Then (F, f) is rarely true if and
only if (F, f) is U'-degenerately or rarely true if and only if every side polynomial
for (F, f) is U’'-degenerate, that is to say, extraneous.

Finally, there is at least one generically resolving side polynomial for (F, f)
yet no generic side polynomials for (F, f) if and only if (7, f) is not generically
true and (by the above) neither degenerately nor rarely true, that is, if and only
if (F, f) is generically conditionally true. d

4 Proof by Refutation and the Kind of Truth

Because of Hilbert’s Nullstellensatz, algebraically closed fields are algorithmically
convenient to work with, and we frequently assume algebraic closure of L in
what follows; moreover all fields have characteristic zero since we work with
polynomials over the rational numbers. When L is the field of real numbers, a
geometry theorem being true in any of the senses just defined means that it
is true in the theory of Fuclidean geometry. Of course, if a possible theorem is
universally true over an algebraically closed field of characteristic zero, then it
is true over the complex numbers and hence over the reals also. Although the
converse fails, it seems to do so rarely, a fact which apparently generalises to
the other kinds of truth as we see in examples to follow. Certainly any side
polynomial over algebraically closed L is a side polynomial over the reals also.
Thus the assumption that L is algebraically closed is not totally artificial and
corresponds to a certain well-defined level of geometrical reasoning which in
practice seems only a little weaker than full Euclidean geometry, namely metric
geometry. We recommend the book [2] to the reader interested in a more detailed
account of some of these matters, which have been discussed by many authors.

There are methods which allow one to test whether a given guess is a side
polynomial for a possible theorem (and these are considered in detail in [4]),
but guessing side polynomials i1s generally difficult. Furthermore, the existence
of (say) a resolving side polynomial for (7, f) does not preclude the existence of
generic side polynomials, so the kind of truth is not necessarily established by
a correctly guessed side polynomial. Moreover, one can never be sure of having
a complete set of side polynomials (so that the disjunction of the associated



inequations covers all possibilities for side conditions) using such an approach.
A method which is able both to produce a complete set of side polynomials and
then to read off the kind of truth of the possible theorem is desirable. It turns
out that the set obtained using Kapur’s method in [4], based on constructing
the Grobner basis of F'U {fz — 1}, does this job.

Recall from Theorem 1 that C'(side(F, f)) = side(F, f). We shall call any set
of polynomials G C Q[X,] for which C(G) = side(F, f) a complete set of side
polynomials for (F, f). Then certainly, for any ¢ € L™, h(a) = 0 for all h € F
and g1(a) #0Vyga(a) #0V---Vgg(a) # 0imply f(a) = 0, and moreover any side
polynomial p is such that p(a) # 0 implies g1(a) # 0V ga(a) 0V ---Vgr(a) # 0.
So the disjunction of the side conditions of the form ¢; # 0 is the weakest possible
such disjunction. We similarly define a complete set of generic side polynomials
for (F, f) to be any finite G C Q[U] for which C'(G) NQ[U] = side(F, ) NQ[U].

For FU{f} C Q[X,] and U a non-empty subset of X, let (F : f)r be the
ideal (FU{fz —1})x,u{zy NQ[U]. (If U = X,,, this is the saturation of f with
respect to the ideal (F)x, .)

Results similar to the following have already appeared in the literature.

Theorem 3 For the possible theorem (F, f), side(F, f) = Cx vy (FU{fz —
11 NQIX,].

Proof. Let B(F, f) = Cx,ui-1 (FU{fz —1}) NQ[X,]. The following are equiv-

alent.

— g € B(F, [);

- ¢ €Q[X,], and if @ € Vx, (F) and f(a)b = 1 for some b € L, then g(a) = 0;
— g €Q[Xpy]and if a € Vx, (F) and f(a) # 0, then g(a) = 0;

— ¢ €Q[Xy] and if @ € Vx, (F) and g(a) # 0, then f(a) = 0;

— g € side(F, f)

Hence side(F, f) = B(F, f). d

Theorem 4 Suppose L is algebraically closed. Then side(F, f) = C((F : f)x, ),
and if a lexicographic order is used in which z is the biggest variable and the
variables in U are all ordered below those in X,\U, then GB(FU{fz—1})NQ[U]

is a complete set of generic side polynomials for (F, f).

Proof.

Co((F: flv) = Co((FU{fz = })x,u:3 NQUI)

C Cx,u (FU{fz=1})x,u1:) NQU]) NQ[U]
C Ox, 3 (FU{fz = 1} x,04:3) NQU]

= Cx,u{-}(FU{fz = 1})NQ[U]

= side(F, f)

from Theorem 3. (Note this part of the argument works even if L is not alge-
braically closed.)



Conversely, if L is algebraically closed and g € side(F, f) N Q[U], then by
Theorem 3, g € C'x ui.3 (FU{f2—1})NQ[U], so by Hilbert’s Nulltellensatz, there
exists n > 0 for which ¢" € (FFU{fz —1})x,u{s} and hence ¢" € Cy (£ : f)v),
so by Hilbert’s Nullstellensatz, ¢ € Cy((F : f)v). Hence side(F, f) N QU] C
Cu((F : fir) and so side(F, f) = Cu((F : f)v).

From the theory of Grobner bases, if a lexicographic order is used in which
the variables in U are all ordered below those in X,, U {z}\U, then GB((F U
{fz =1} NQ[U]) = GB(FU{fz—1})NQ[U], which is therefore a generating
set for the ideal (F : f)r and hence is a complete set of side polynomials for
(F, f), since if an ideal T is a complete set of side polynomials for (F, f) then so
is any generating set for /. d

The following is immediate if one lets U = X,.

Corollary 5 Suppose L is algebraically closed. If a lexicographic order is used
in which z is the biggest variable, then GB(F U{fz—1})NQ[X,] is a complete
set of side polynomials for (F, f).

This generalises a result in [4], where it was shown that if a side polynomial
h consistent with the hypotheses (in other words a non-extraneous side polyno-
mial) exists, then there will be one in GB(FU{fz—1})NQ[X,]. Our result shows
that GB(FU{fz — 1}) N Q[X,] spans all possible side conditions in the natural
sense described earlier, and moreover this extends to generic side polynomials.

Suppose L is algebraically closed. Let G(side(F, f)) = GB(FU{fz—1})N
Q[X,], computed with respect to a fixed lexicographic order in which z is the
biggest variable and the variables in U are all ordered below those in X,\U.

Let

G = G(side(F, f)) N Q[UY,
Ga={g|g € G(side(F,[)),g & QU], G(side(F,q)) N QU] = 0},
Gs = {g | g € Glside(F, J)), G(side(F, 9)) N Q[U] # 0, G(side(F, ) # {1},
Ga=1{g |9 € G(side(F, [)),G(side(F,g)) ={1}}.

(i1 consists of a complete set of generic side polynomials as we have just shown,
(5 consists of generically resolving side polynomials, (G5 consists of non-extraneous
degenerate side polynomials and (4 consists of extraneous side polynomials.

Thus the G; partition G(side(F, f)): G = U/_,G; and G; NG =0 for i # j.
Theorem 6 The possible theorem (F, f) is

universally true if and only if G1 = {1};

generically true if and only if G1 # 0;

generically conditionally true if and only if G1 = 0, G2 # 0;
degenerately true if and only if G1 = G = 0, G5 # 0;
rarely true if and only if G1 = G2, = G3 =0, G4 # 0.

SMEaINES



Proof. Since it generates the ideal side(F, f), G(side(F, f)) is a complete set
of side polynomials for (F, f). Consequently, for any side polynomial for (F, f),
there exists k € G(side(F, f)) such that h(a) # 0 implies k(a) # 0, a € L.
Hence k is zero on no more irreducible components of Vx, (F) than is h.

If (F,f) is generically true, then by Theorem 4, Gy # @; the converse is
obvious.

Suppose (F, f) is generically conditionally true. Then Gy = @ as otherwise
there would be a generic side polynomial for (F, f). Furthermore, there exists a
side polynomial & for (F, f) which is generically resolving. Hence by the above,
there exists k& € G(side(F, f)) which vanishes on no more irreducible components
of V(F) than does h. Hence k is either generically resolving or generic. It cannot
be generic since G; = 0, so k € G5 and so G5 # 0.

Conversely, suppose G1 = §, G2 # . Then (F, f) is not generically true
since (71 1s a complete set of generic side polynomials, but there is a generically
resolving side polynomial, so (F, f) is generically conditionally true.

Suppose (F, f) is degenerately true. Then as above, G; = G = §. Also
as above, because there is a degenerate side polynomial for (F, f), there must
be one in G(side(F, f)), and so Gz # §. Conversely, if G; = G2 = @ and
(i3 # 0, then (F, f) is certainly not generically true since Gy = @), but neither is
it generically conditionally true, as if it were, G5 # { from earlier in the proof.
Thus (F, f) is degenerately true since there are no generic or generically resolving
side polynomials, but there is at least one degenerate side polynomial.

Suppose (F, f) is rarely true. Then, again, G1 = Gy = G3 = 0 yet G4 # 0.
Conversely, if G; = G2 = G3 = 0, G4 # 0, then, as above, (F, f) is not generically
true, nor generically conditionally true, nor degenerately true, and hence is rarely
true. |

Thus G(side(F, f)) provides a complete set of side polynomials for (F, f)
from which the kind of truth may be determined along with the relevant side
polynomials and, with luck, a geometrical interpretation of each such side poly-
nomial, leading to a geometrical side condition for each.

5 Implementation and Examples

The classification procedure given by Theorem 6 can be attached to a standard
implementation of a refutational prover for algebraic geometry theorems. This
has been coded in Mathematica using the following algorithm:

1. Translate geometric predicates in the hypotheses and conclusion to alge-
braic polynomials, giving F' C Q[X] and f € Q[X], respectively. For exam-
ple, Collinear[a,b,c] (meaning that the points a, b, and ¢ are collinear)
translates to the coordinate polynomial

(z]a] — 2[b]) (y[b] — yle]) — (yla] — y[b]) (x[b] — 2[c]).

Additionally, the construction sequence 1s used to determine which variables
are independent, the elements of U C X, as described in [2].



2. Compute the Grobner basis G(side(F, f)) = GB(F U {fz — 1}) N Q[X],
removing the polynomials involving z.

3. Split Gside(F, f)) into the four sets G, Ga, Gz, G4, as defined in the pream-
ble to Theorem 6. This involves additional Grobner basis computations.

4. If G4 = {1} then return True. Otherwise, attempt to translate the polynomi-
als back into geometric predicates using pattern matching. (If no predicate
can be determined then the polynomial is returned for inspection by the
user.)

The Mathematica code for our implementation can be downloaded from

http://wuw.maths.utas.edu.au/People/dfs/dfs. hi:

geometry
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Fig. 1. The Parallel Pappus Theorem.

Parallel Pappus. The following is a famous theorem of Pappus:

{ Collinear[A,B,C], Collinear[D,E,F],
Parallel[A,E,B,F], Parallell[B,D,C,E] };
Conc[Pappus] = Parallel[A,D,C,F];

Hyps [Pappus]

The function Provel[F', f] returns the kind of truth of the possible theo-
rem (F, f) as a 4-tuple {generic, conditional, degenerate, extraneous} of sets of
equations. In the case where the first of these equals {1} with all others empty,
the output is rendered as True.

Prove[Hyps [Pappus],Conc [Pappus]]
True

Thus this possible theorem is universally true. Any instance of the hypotheses
is an instance of the conclusion, without restriction.
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Fig. 2. The Centroid Theorem.
Centroid Theorem. We denote by Midpoint[a,b,c] that the midpoint of the

line segment between a and b is the point ¢, and by Centroid[a,b,c,d] that
the centroid of the points a, b, and ¢ is the point d.

Hyps[CentroidThm]
Conc[CentroidThm]

{ Centroid[A,B,C,M], Midpoint[B,C,D] };
Collinear[A,D,M];

Prove[Hyps[CentroidThm] ,Conc[CentroidThm]]
True

Again, this theorem happens to be universally true.

Universal truth is an uncommonly strong property of possible theorems. It
means that the entailment holds for arbitrary choices of the points. For example,
the Centroid theorem holds even when all the points are collinear.

Collinearity Theorem. Consider the following statement carefully:

Hyps[CollinearityThm] = { Collinear[A,B,C], Collinear[A,B,D] };
Conc[CollinearityThm] = Collinear[B,C,D];

Again we invoke Prove to establish truth:
Prove[Hyps[CollinearityThm],Conc[CollinearityThm]]
{{!Identicalla, B1}, {3}, {}, {}?}

In this case we obtain a generic side polynomial for the possible theorem. The
theorem is generically true, and the associated side condition asserts that points
A and B are not identical. The prover has established that !Identical[A, B] is
a weakest possible (generic) side condition: any other side condition is at least
as strong. (Readers should draw a diagram for the case where A and B coincide
to see the problem.)
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Fig. 3. The Parallelogram Theorem.

Parallelogram Theorem. The following possible theorem says that the diagonals
of a parallelogram bisect each other.

Hyps[ParallelogramThm] = { Parallel[4,B,D,C],
Parallel[D,A,C,B], Collinear([0,B,D], Collinear[0,A,C] };
Conc[ParallelogramThm] = Equallength[4,0,0,C];

Here the predicate EqualLengthla,b,c,d] says that the line segments ab
and cd are of equal length.

Prove [Hyps[ParallelogramThm] ,Conc[ParallelogramThm] ]

{{'Collinear[4,B,Cl7},
{!'Collinear[A,C,D],'Collinear[B,C,D], !Collinear[B,C,0],
1Collinear[C,D,0]%},

{,
{!'Collinear[A,C,0]}}

This theorem is generically true: the associated side condition states that the
points A, B, and C are not collinear, and again, any other generic side condition is
at least as strong as this one. We also have five non-generic side conditions. One of
these, the side condition Collinear[A, C, 0] is a consequence of the hypothe-
ses and hence is extraneous. The remaining four side conditions are generically
resolving.

Isosceles Theorem. In this example, EqualAnglela,b, ¢, d, e, f1 says that the
angle Zabc is equal to the angle Zdef.

Hyps[IsoscelesThm] = {EqualAngle[A,B,C,C,A,Bl};
Conc[IsoscelesThm] = Equallength[A,C,B,C];

We obtain

Prove[Hyps[IsoscelesThm] ,Conc[IsoscelesThm]]

{{}, {'Collinear[a, B, C1}, {F, {3}



So the possible theorem is generically conditionally true. The conditional
predicate !Collinear[A, B, C] identifies which of the two generic components
gives a theorem.

A Rarely True Theorem. Rarely true theorems are not of great interest, but here
1s an example:

Hyps [NonThm]
Conc [NonThm]

{Midpoint[4,B,Cl};
Midpoint[4,C,B];

Prove[{Midpoint[A,B,C]},Midpoint[A,C,B]]

{3, {3, {3, {'Midpoint[4,B,CI}}

Thus any side conditions for the possible theorem are at least as strong as the
negation of the hypothesis! That is, there is no component of the hypothesis on
which the conclusion holds. The theorem fails to hold in a most comprehensive
way.

6 Conclusion

Universal truth was considered in [2] and [3], as was the Grobner basis char-
acterisation given above. The definitions of generic truth and non-degeneracy
conditions originate with Wu, [8] and [9], and have been considered also by
Chou in [2], where a variant on the Grobner basis method using fields of rational
functions is featured. Conditional truth in general (meaning neither universal
truth nor rare truth) was considered in [3] along with the Grobner basis method
of proof. Generically conditional truth was considered in [2] though no Grobner
basis method was given. In [1], two strengths of generic truth were defined in
terms of the highest dimension irreducible components of the hypothesis variety,
an approach often giving a different notion of generic truth to the one used here
and one which Chou argues in [2] is not always the one intended by the user.
The notion of a complete set of side polynomials, though hinted at in [3], seems
not to have been explicitly considered elsewhere.

More recently, the article [7] takes a similar approach to ours, in that a possi-
ble theorem (F, f) is classifiable as universally true (called “geometrically true”
in [7]), generically true, neither generically true nor generically false (generi-
cally conditionally true in our terms), and generically false. However, this is
done by computing with both (elimination ideals generated by) F U {fz — 1}
and F U {f}, whereas our approach considers only Grobner bases of the former
kind of set (that is, side polynomial calculations). The approach in [7] does not
seem to be able to provide information in the generically conditionally true case
(other than to flag the need for a decomposition), whereas our approach is able
to provide side polynomials which eliminate the generic irreducible components
on which the conclusion fails to hold. An advantage of the approach in [7] is the
possibility of generating additional hypotheses of equational type (rather than



just inequations) in the generically false case, although the approach is not guar-
anteed to do this. Nonetheless, it would be possible to use a combination of the
approach in [7] and our approach in such cases: first, that a theorem is generi-
cally false could be established using our approach, and then F U {f} could be
considered in an attempt to obtain sufficient additional equational hypotheses.

The main contribution of the current work is to bring together facts which
show that a single Grobner basis calculation for FU{fz—1} yields a complete set
of side polynomials {g1, g2, . . . , g1 } for the possible theorem (F, f), and moreover
that this (plus perhaps similar calculations of Grébner bases for some of the
F U {giz— 1}) is all that is needed to classify the kind of truth of the theorem
and to provide the appropriate complete set of side conditions.

Obtaining the prover. A Mathematica Notebook GeometryExamples.nb con-
taining the above examples along with the associated Mathematica package Ge-
ometryProver.m are available for downloading from

http: //www.maths.utas.edu.au/People/dfs/dfs.html
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