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Abstract. This paper describes the DiKe model-based diagnosis framework, which
incorporates multiple diagnosis engines, multiple user-level system description
languages, a theorem prover, and a graphical user interface to provide an inte-
grated toolset for the development of model-based diagnosis applications. The
framework has been used for representing a number of application domains. We
present the AD2L language, the main user language for the system geared to-
wards use by non-specialists, and discuss use of DiKe in various domains.

1 Introduction

Model-based Diagnosis and Model-Based Reasoning are two areas of knowledge-based
systems research that grew out of the late 1980s’ disenchantment with traditional rule-
based expert system technology. The goal was to avoid the brittleness of the latter sys-
tems by using a Reasoning from First Principles approach, and the maintenance issues
by providing high-level representation languages with unambiguous formal semantics.
Overall that goal can be considered to have been attained as model-based systems are
being employed in a variety of application areas. On the other hand, whereas rule-based
tools are still widespread and used by many practitioners on actual applications projects,
the model-based approach has so far not really moved out of the academic world. What
applications there are are quite successful but still require the attendance of a research
team to develop and implement system descriptions and implement or at least tune
special-purpose reasoning engines. There is no widespread understanding of the prin-
ciples, acceptance of the advantages, or support from a user community as with the
continuing ”grassroots” existence of various development environments for rule-based
systems.

Our goal is to facilitate the development of model-based diagnosis into a technology
that can be readily used even by individuals without a formal training in AI techniques.
�
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To this aim we have built an integrated diagnosis toolkit that provides different types
of diagnosis engines, graphical user interfaces, and user level languages for describing
diagnosis knowledge but do not require detailed knowledge of formal logics. In fact the
language AD2L was purposely defined to have an appearance similar to conventional
programming languages that would help acceptance with engineers or software devel-
opers. We describe the principles of AD2L, and then discuss the implementation of the
framework, its use in domains as diverse as circuit diagnosis and software debugging,
and ongoing work on the system.

2 Model-based Diagnosis

Model-based diagnosis (MBD) [28, 5] is a general approach to solve the problem of
diagnosing malfunctions in technical, biological, or environmental [17, 16] systems. In
MBD a declarative model

���
of the system is used to identify components �������

of the system that if assumed to be incorrect, cause the observed behavior �
	 � . For-
mally, diagnoses can be characterized in different ways, the most widespread being
consistency-based [28]: A set ���������� is a diagnosis iff

����� �
	 ��������� 	�������� ����������� �!�#" ���$� 	#�����%� �&���#"
is consistent.

� 	#�'��� indicates that a component � is behaving abnormally, and a cor-
rectly behaving component � is described by

��(*) �'��� . In general we want to compute
diagnoses which are subset-minimal.

The model must be compositional, i.e., provide behaviors of individual components
from which the overall system is composed (such that the system description can be
composed from the models of the components) but requires only to capture the correct
behavior. The faulty behavior of components can be also incorporated into the MBD
framework (see [30, 10]). The MBD approach is flexible and is not limited to diagnosis
of physical systems, e.g., it has also been applied to solving configuration tasks [3, 32]
and software debugging [11, 34].

The main task of a MBD system is to determine components that are responsible
for a detected misbehavior. In consistency-based diagnosis this is done by assuming the
correctness of components and proving consistency of the given model and observa-
tions. If the assumptions lead to an inconsistency, they are called a conflict. Reiter’s hit-
ting set algorithm [28, 14] uses the conflicts to compute all minimal diagnoses. Hence,
diagnosis is reduced to search for all conflicts. Beside [28] the GDE [5] makes use of
this approach. Other MBD algorithms based on a form of belief revision [12] or on con-
straint satisfaction algorithms [7, 31]. Most of the diagnosis algorithms utilize special
data structures for search.

Apart from theoretical work on MBD and modeling for MBD there are multiple
applications of MBD described in the literature. In [38, 27] the authors describe a MBD
system that operates the Deep Space One spacecraft. Other applications of MBD and
model-based reasoning (MBR) are reported in [39, 35]. For example, [25] introduces an
MBR approach to nuclear fuel reprocessing, and [24, 29, 1] describe the application of
MBD in the automotive domain, a very promising area to apply MBD technology.



3 Building MBD Applications: The Problem

An MBD application presupposes the existence of an implemented diagnosis engine
and a model of the system that can be described using the language used by the diag-
nosis engine. The diagnosis engine makes use of the model and the given observations
to compute (minimal) diagnoses. Most prototypical diagnosis systems tightly couple
the diagnosis engine and the system description language which is used to describe the
model. This has the advantage that there is no overhead on side of the modeling lan-
guage, but has the disadvantage that models cannot be used by other diagnosis systems
without substantial effort. What is required in order to solve this problem is a general
system description language with well-founded syntax and semantics. Such a language
must be capable of describing different kinds of systems from different domains.

Although the use of a standardized and general system description language has its
advantages, a general diagnosis framework should avoid too tight a coupling. Reasons
are: (1) languages change, (2) in some applications it is better to use the basic model
representation methods directly, (3) a general framework should be easily adaptable
to other circumstances, and finally (4) the implemented diagnosis engine may not be
capable to handle all aspects of the language because it is optimized for a given subset.
Therefore, it is better to introduce a compiler that maps models described in a modeling
language to the basic model representation methods provided by the diagnosis engine.
The compiler has to ensure not only syntactical correctness but also the correct mapping
of models to their corresponding representation.

We propose the use of a general modeling language which allows for specifying not
only the structure of a system and the behavioral models of the components but also
additional diagnosis knowledge, e.g., fault probabilities, possible replacements and re-
pair suggestions, observability of connections and states, correctness of components
and component focus sets, logical rules stating physical impossibilities as described
in [10], and others. Every diagnosis engine that is capable of compiling the models
written in such a general modeling language can make use of them. If using the pro-
posed approach, we gain more flexibility, enhance model reuse, and focus the user more
on modeling issues than on implementation issues.

4 The DiKe Modeling Language and Implementation

Our MBD application framework comprises two main parts: a modeling language (AD2L)
and class library implementing different diagnosis engines. The modeling language al-
lows specifying the behavior of components and the structure of systems. It is inde-
pendent from the implemented diagnosis classes and could be used in other systems.
Syntax and semantics of AD2L are well-defined. We have used the DiKe application
framework in several different diagnostic systems.

4.1 The AD2L Modeling Language

The purpose of designing a dedicated system description language for model-based di-
agnosis is to support the user in writing the actual models. He should not be required
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to engage in applications programming, and the language should provide constructs
to directly express the basic primitives that are generally used in system descriptions
for model-based diagnosis. In other words, the language is supposed to provide a vo-
cabulary that corresponds to the structure generally present in system descriptions for
various domains.

We assume a diagnosis model to be composed out of smaller model fragments. Such
a model fragment describes the behavior of a single component, e.g., a � -input AND
gate, whereas a complete model describes the structure and behavior of a whole system
in a logical way. The art of writing model fragments is that of describing the behavior
in a context independent way, i.e., the behavior description of a component should not
determine its use. In practice context independence cannot always be achieved, nor is it
possible to define a language that guarantees context independence.

In this section we introduce the basic concepts of the AD2L language [26] designed
for the purpose of communicating diagnosis knowledge. Instead of formally describing
the language we show its capabilities using an example from the electrical domain.
Consider a home power network, which typically involves a connection to the local
power supplier, fuses, sockets, and devices attached to sockets: lights, washers, and
other power consumers. Figure 1 shows a small part of such a net.

In order to write a model for a power network we (1) define types for connections,
(2) declare a model fragment for every component, and (3) connect the fragments to
receive the final model.

Defining types Types are used for representing the domain of connections and compo-
nent ports. In AD2L there are 5 predefined types: boolean, character, string, integer, and
real, with some predefined functions, e.g. +,*, and others for integer and real values. In
addition, the programmer can declare enumeration types. For example, in the power
network domain we want to describe a qualitative model for currents and voltages, only
using the information about whether a current or voltage flows or not. In this case we
define the following type:

type electrDomain :
�

“on“ , “off“ " .



Apart from such simple enumeration types, AD2L allows the use of predicates and
the specification of tolerances and equivalences.

type quantDomain : real tolerance [ -5% , 10% ].
type myLogic :

�
’0’ , ’L’ , ’1’ , ’H’ , ’X’ , ’Z’ "

equivalence
�

’0’ = ’L’ , ’1’ = ’H’ " .
Tolerances and equivalences are used for determining a contradiction during com-

putation. For example, if we can derive the value ’1’ for a connection
�

of type myLogic
and we have an observation ’H’ for

�
, then no contradiction arises. If no equivalence

relations are defined, a contradiction occurs because it is assumed that a connection can
only have one value.

The use of predicates in type declarations is another feature of AD2L. Consider the
case where a connection can have several values, e.g., a radio link that broadcasts the
signal of several channels at the same time. The type for this connection is defined as:

type channel :
�

“nbc“ , “cnn“ , “abc“ " .
type radioLink :

�
predicate online ( channel ) " .

The channel type enumerates all possible channels that can be broadcasted. A con-
tradiction only occurs in this case if a connection of type radioLink has a predicate and
its negation as its value at the same time, e.g., online(“abc“) and -online(“abc“).

Using types for connections has two advantages. The first is that type checking
can be performed at compile time. The second is that the list of domain values can be
employed at the user interface level to present a list of possible values, or for checking
the validity of user input after data entry.

Writing behavior models The component declaration statement is the basic tool in
AD2L for describing the interface and behavior of components. AD2L distinguishes
between two different component declarations, atomic components and hierarchical
components. Atomic components have a fixed, declared behavior and cannot be sub-
divided further. Hierarchical components derive their behavior from their set of internal
subcomponents (and connections between them) which are separately described. The
subcomponents themselves may either be hierarchical components or atomic compo-
nents.

Using the power net example, we now show the use of AD2L for writing atomic
components. Verbally speaking, a light is on if its switch is on and it is connected to a
current source. If the light is on, there must be a current flow and a voltage drop. Note
that a voltage can be measured although there is no light and no current flowing through
the bulb. If the bulb is broken, i.e., the component does not work as expected, then there
is no current flow and the light is off. Formally, this behavior can be described in AD2L
as follows:

component light
comment ”This is a qualitative model of a light”
input current, voltage : electrDomain.
input switch on : bool.
output light on : bool.



default behavior nab
Val(switch on,true), Val(voltage,on) =:= Val(current,on).
Val(current,on) =:= Val(light on,true).
Val(light on,false) =:= Val(current,off).
Val(light on,false) =:= Val(switch on,false).

end behavior

behavior ab
=: Val(current,off).
=: Val(light on,false).

end behavior
end component

In the first line of the AD2L declaration of the component light, a comment is given.
It is followed by the declaration of the interface, i.e., the ports which are used for con-
necting different components via connections. The AD2L compiler checks the types
of connected ports and reports an error if they are not equivalent. In our case we de-
fine 4 ports: current, voltage, switch on, light on. The declaration of interfaces allows
to specify whether a port is an input or output port or both (inout). Note that this in-
formation is not used to restrict the behavior description. It is intended to be used by
diagnosis engines to determine a focus set or to optimize questions to the user about val-
ues. In addition, in AD2L the programmer can specify parameterizable generic ports. A
generic port can be used to configure the component for different systems. For example,
a component with a generic number of inputs is defined by:

generic Width : integer = 2.
input i[1-Width] : bool.

After the interface, the behavior of the component can be defined. It is possible
to define several behaviors. Each of them has a name (also called a mode), e.g., nab
standing for not abnormal. In the example we distinguish between two modes. One
defines the expected and the other the faulty behavior of light. AD2L requires one mode
to be designated as default mode. The default behavior is used by the diagnosis engine
as a starting point for diagnosis.

A behavior itself is described using rules. A rule consists of two parts (the left and
the right side) separated by an operator =: or =:=. For rules of the form L =: R the
semantics are easy: If L evaluates to true, then all predicates in R must be true. Rules
of the form L =:= R are a shortcut for L =: R and R =: L. For rules of the form L =: R
the left side is called condition and the right side action part (where the action simply
consists of asserting the predicates on that side as true).

The left and the right side of rules are conjunctions of predicates. Disjunctive sen-
tences have no direct representation in AD2L for complexity reasons. Predicates are
predefined. The use of quantifiers is possible. Note that this AD2L predicates are dif-
ferent from data type predicates that are used as elements of a type and are defined by
using the predicate keyword. Data type predicates are explained previously. The most
important AD2L predicate is the Val predicate. Its first argument is the port and the
second the value of the port. It evaluates to true if the port has the given value. Another



important predicate is Cond with a condition as the only argument. If the condition is
true, the predicate evaluates to true. For example, the rule

Val(anInput,X), Cond(X � 20) =: Val(anOutput,true).

specifies that if the value of anInput is greater than 20 the port anOutput must con-
tain the value true. Note that Cond can only be used in the condition part of a rule.
(Thus, in rules containing Cond the use of =:= is not allowed.) Another predicate is
Fail which, if true, raises a contradiction. This predicate has no arguments and can only
be used in the action part of a rule. Again, its use in =:= rules is not allowed.

The use of quantifiers in rules is defined in AD2L. The intention is to use quantifiers
for making the model as concise as possible. For example a quantifier can be used in
the case we have to set all input ports to a specific value.

=: forall INPUTS : Val(INPUTS,on).

Note, that the existential quantifier (exists) can only be used in the condition part.
In this case only the =: rule operator is allowed. The forall can be used in both parts
of the rule. The quantification operator only influences the part of the rule where it is
used. All of these restrictions are necessary to avoid complexity problems.

The variable INPUTS is a built-in variable storing all input ports of the current com-
ponent. There are several other built-in variables predefined in AD2L, e.g., OUTPUT
and others. The user can also define variables using the variable declaration that must
be located in the interface part of the component declaration. All variables are restricted
to a finite domain.

We define the semantics of quantifiers based on the semantics of rules and predi-
cates.

Forall Conjunctive sentences of the form forall X: P(X) op A (with � � ��� � ) are
transformed into a single sentence P(v � ), . . . , P(v � ) op A, where ��� is an element of
� and �
	 is either =: or =:=.

Exists Conjunctive sentences of the form exists X: P(X) =: A (with � � ��� � ) are
transformed into a set of sentences P(v � ) =: A,. . . , P(v � ) =: A one for each element
��� of � .

The user can extend the core behavior definition by additional properties, i.e., repair
costs, actions, and probabilities.
component light
. . .

default behavior nab
prob 0.999
cost 2
action ”Replace the bulb”
Val(switch on,true), Val(voltage,on) =:=

Val(current,on).
. . .

As stated above, hierarchical components can also be defined in AD2L. Their dec-
laration is discussed in the next section. We decided not to distinguish between hierar-
chical components and systems because there is no conceptual difference between them
- both contain components and connections.
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Writing system models Systems and hierarchical components consist of components
and connections. Components can be either atomic components or again hierarchical
components. The behavior of a system and a hierarchical component is given by the
behaviors of the subcomponents. A hierarchical component can only have two behav-
iors. If it works correctly, all subcomponents are assumed to work correctly as well.
The subcomponent behavior is given by their default behavior. In the other case, where
the hierarchical component is assumed to fail, nothing can be derived. The probability
of a hierarchical component � working correctly is computed using the probabilities of
the default modes of the subcomponents

� � � ��������� � � " :

	 � �
(*) �'��� � �

��
��� � 	 ���
	��

(����� �
����	 ��� � � � �

From the rules of probability theory follows 	 � ( ) ����� � ����� 	 � �
(*) �'��� � .

The user defines systems and hierarchical components by (1) declaring the used
subcomponents, and (2) defining the connections between them. In our example the
power net can be described at the system level as follows:

component power network
input ext voltage, ext current : electrDomain.

subcomponents
fuse 1 : fuse.
socket 1 : socket.
light 1 : light

end subcomponents

connections
ext voltage - � fuse 1(voltage in).
ext current - � fuse 1(current in).
fuse 1(voltage out) - � socket 1(voltage in).
fuse 1(current out) - � socket 1(current in).
socket 1(voltage out) - � light 1(voltage).
socket 1(current out) - � light 1(current).

end connections
end component

The graphical representation of the 	 ����	�� � 	 � � ����� system is given in figure 2.
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4.2 The DiKe Framework Implementation

The diagnosis kernel implements all classes and methods necessary for building a di-
agnosis application, i.e., the class library for the user interface, the diagnosis engine,
and the compiler. It was designed for flexibility and ease of use. The diagnosis ker-
nel framework is implemented in Smalltalk (Visualworks 2.52 and 5i) and comprises
generic classes for representing general interfaces and specific classes implementing
the functionality. The portability of the Visualworks system has led to use of the frame-
work under Solaris, Linux, and Win 95/98/NT. Figure 3 gives an overview of the cur-
rently implemented parts. The diagnosis engine on the right is divided into a diagnosis
system and a theorem prover. The diagnosis system implements a diagnosis algorithm
and stores knowledge about observations, connections, and components of a specific
system. The theorem prover stores the behavior of the component to allow checking
whether a system together with the observations and assumptions about the correctness
of components is consistent or not. In cases where a consistency check is not neces-
sary, a theorem prover is not used, e.g., the implementation of the TREE algorithm [31]
requires no explicit theorem prover. The implementation of Reiter’s hitting set algo-
rithm [28, 14] on the other hand needs a theorem prover.

Currently, our framework provides three different diagnosis engines. Two engines
use Reiter’s algorithm while the other implements the TREE algorithm. Although the
diagnosis algorithm is the same for the first two implementations, they use different the-
orem provers. One uses a propositional theorem prover and the other a constraint system
and value propagation. All concrete implementations have the same generic superclass.
The generic diagnosis system class provides the interface, e.g., names of methods for
executing diagnosis, requesting the next optimal measurement point, adding and re-
moving observations, and others. The user writing an application using our diagnosis
framework should choose the most appropriate diagnosis engine. If the model contains
operations on numbers, the user should choose the value propagation algorithm. If the
model is tree structured as defined in [31] the user should select the TREE algorithm.



In all other cases the algorithm using the propositional theorem prover ensures best
runtime performance that is almost equal and sometimes better than the performance
published for other algorithms [12, 37].

The diagnosis kernel provides two languages for describing specific diagnosis sys-
tems, e.g., a digital full-adder. The first language, DTalk is closely related to Smalltalk
syntax and semantics. For every kind of diagnosis engine there are specific language
constructs representing the distinct behavior descriptions. While the knowledge about
structural properties of a diagnosis systems are almost the same for every engine, this
is not the case for the component models of DTalk. Therefore, we have developed a
second more general language. This language AD2L has been described in a previous
section. Models written in AD2L are not restricted to one diagnosis engine, although
currently only the transformation of AD2L programs into the representation for the
constraint based diagnosis engine is supported.

Apart from classes for representing diagnosis knowledge, we have added classes for
building user interfaces to the diagnosis kernel, to enable rapid prototyping of complete
diagnosis applications. Using the demo applications and the diagnosis kernel classes
as starting point, a first prototype of a diagnosis system implementing most of the re-
quired diagnosis functionality can be developed quickly. One of the demo interfaces
uses a text-based user interface allowing to load systems and handle observations and
other diagnosis knowledge, e.g., fault probabilities. The second variant uses a graphical
approach for representing components and connections, similar to a schematics editor.
Both applications provide messaging interfaces for starting the diagnosis and measure-
ment selection process.

Diagnosis and measurement selection runtimes are competitive with other imple-
mentations [12, 37, 7]. Parts of our VHDL debugger [11, 33, 40] were implemented us-
ing the diagnosis kernel.

5 JADE: A Debugger for Java Programs

The DiKe class library has been used for several MBD projects. One of the most recent
projects using the DiKe library is the Java Diagnosis Experiments (JADE) project. Dur-
ing this project the MBD framework is used to implement a debugger for Java programs.
We have developed two different models of Java programs. One abstract model [21, 20]
considers only the dependencies between variable occurrences in the program which are
stored as propositional rules. The other model [23] represents the whole semantics of a
(large) Java subset. This subset includes method calls, conditional statements, and while
statements. This value-based model is represented as a constraint propagation system.
Because of the different representations the implementation of the models makes use of
different diagnosis engines. The abstract model is mapped to classes implementing the
propositional theorem prover, whereas the value-based model is mapped to the imple-
mented constraint propagation system. Both model implementations make use of the
implemented hitting set diagnosis algorithm.

The JADE debugger is a prototype system for research purposes and for demon-
strating the underlying model-based techniques. Development of the debugger was sig-
nificantly accelerated by making use of the available DiKe framework. First, no changes



of the basic classes of the DiKe library were necessary, we only needed to develop
classes implementing the models. Because of available classes implementing similar
functionalities and inheritance this was not a problem. Second, the standardized in-
terface of the different diagnosis engines makes it easier to develop a graphical user-
interface. Only small changes were necessary to adapt the interface of the dependency-
based model to use it as an interface for the value-based model. Finally, the DiKe class
library is very stable, because it has been tested on a number of examples and has been
used for several prototypes so far. Because of the use of the DiKe framework the first
Jade prototype could be finalized early in the project. The most expensive part for real-
izing the first prototype was the implementation of a Java compiler, the Jade interface,
and the development of the models. As a consequence we were able to extend the de-
bugger to support the whole Java language and to improve the user-interface which is
very important.

Other prototypes where we make use of the DiKe class library are a debugger for
the hardware design language VHDL [11], a system allowing to interchange component
models using TCP/IP socket communication, and a reconfiguration system for software
parameters of a phone switching system [32], all in the context of industrial projects.

6 Results

The DiKe MBD framework has been used to build prototypes for several different do-
mains, e.g., debugging of VHDL designs [11], reconfiguration of software parameters
of phone switching systems [32], audio routing systems, and more recently debugging
of Java programs [22, 23]. In all of these prototype applications the framework has been
proven to be flexible enough and complete with respect to the provided functionality.
The expressiveness of AD2L has been tested on several example systems.

Besides providing a well designed framework for MBD applications, the improve-
ment of diagnosis algorithms was also a goal of several projects in the past years. TREE
and more recently TREE* is one of the outcomes of the projects that were integrated
into the framework. In the following we compare the TREE* algorithm which is an
extended version of the TREE algorithm, with El Fatah and Dechter’s SAB diagnosis
algorithm [7]. Figure 4 gives the runtime results of TREE, TREE*, and SAB for tree-
structured digital systems comprising And and Or gates as described in [7]. We see that
both TREE and TREE* outperform SAB which was proven by [7] to be faster than
GDE [5] and Reiter’s algorithm [28]. This holds especially for larger systems where a
short runtime becomes an major issue. In [36] TREE and TREE* are described in detail
and more empiricial results are given.

7 Related and Future Work

Since the beginnings of model-based reasoning several techniques for representing
models have been proposed. They mainly have in common that they are qualitative
in nature, i.e., they do not use quantitative values. Such models are not only used in
MBD but also in other fields. For example hardware designers speak about ”low” and
”high” or ”true” and ”false” instead of the exact voltage levels. In [4] an overview
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of qualitative modeling is given. Although the basic modeling principles seem to be
established, there is almost no accepted and widely used model description language
available. Every reasoning system based on specific models uses its own languages. In
addition, apart from [18], where a WWW-based modeling system for sharing knowl-
edge about physical systems is described, almost no work in the direction of providing
tools for handling models and model libraries has been done. This system uses CML
(Compositional Modeling Language) for describing models that can be translated to the
Knowledge Interchange Format (KIF) [13]. CML combines languages used for describ-
ing systems using Qualitative Process Theory [9] and the Qualitative Physics Compiler
[2]. Other approaches for sharing diagnosis knowledge include [15] where KQML [8] is
used as communication language. Recent approaches for model interchange are mostly
based on XML. We did not take this approach, because we consider XML to be primar-
ily a language for information exchange, which does not provide support for defining
semantics specific to modeling for diagnosis. On the other hand, it is straightforward to
convert AD2L to an XML-based format.

All previous approaches that rely on a logical description of the model are well
suited for representation purposes. However, they are not so good when modeling is
to be done by less experienced users. We face this problem in industry, where people
are not familiar with the concepts of MBD and logic description languages (including
Prolog). Although they see advantages in MBD compared to other approaches, they are
sceptical concerning the realization of the advantages, e.g., reuse of models. Teaching
students (especially from the electrical and mechanical engineering fields) the funda-
mentals of model-based diagnosis might alleviate the problem in the long term. A major
step forward on the road to more general acceptance could be to uncouple the represen-
tation issue from the theoretical roots of the field and provide a dedicated representation
that is more in line with the background of practitioners who might be ”put off” by the



appearance of pure logic. Advantages of a widely accepted language would include
the possibility to interchange models between researchers and companies, or between
companies directly, the increase of reuse, and the certainty for companies that the model
description can be used for a long time, thus saving the investments for modeling and
providing an argument for using MBD.

The language AD2L described in this paper is a proposal for such a modeling lan-
guage. AD2L [26] has been developed as part of a project with the goal of interchanging
system descriptions over the Internet, and has been extended and adapted for industrial
needs afterwards. The language definition is independent of the underlying diagnosis
engine and provides language constructs directly representing model-based concepts,
e.g., components and connections. In addition, other concepts from programming lan-
guage design have been incorporated such as packages and strong typing. This allows
for building model libraries and avoids errors at runtime, both of which are key require-
ments of industrial applications.

Similar approaches have been considered in the past, such as the language CO-
MODEL [6], but have not found general use in industrial applications. AD2L on the
other hand was developed in collaboration with industry.

Although the DiKe framework has been successfully used to implement different
MBD prototype applications, there are some open issues to be addressed. First, the class
library contains different classes implementing the diagnosis engines and the AD2L
language compiler. In our current implementation the AD2L programs are compiled
to a structure that can only be used by one diagnosis engine. A future implementation
should make a decision about which diagnosis engine to be used in order to optimize
the overall diagnosis runtime. For example, a system that is tree-structured should be
diagnosed using the engine implementing the TREE algorithm [31].

8 Conclusion

In this paper we have described an implementation framework for model-based diag-
nosis systems that we have used in the last three years to implement systems as diverse
as classical circuit diagnosis, reconfiguration of telecommunication networks, and a
knowledge-based software debugger. The framework provides a graphical user inter-
face, different diagnosis engines with different computational properties so that system
performance can be adapted to the requirements and properties of a particular domain.
It includes two different modeling languages, of which one, AD2L was specifically
designed to provide a system independent platform for diagnosis knowledge base de-
velopment and to be amenable to non-AI developers and engineers.
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